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ABSTRACT

The analysis of neurophysiological mechanisms responsible for the imagination of movements is essential for devel-
oping brain-computer interfaces. We have carried out MEG experiments with voluntary participants performing
imaginary movements. We have analyzed the features of motor imagery (imagery arms and legs movements)
at the source level. We have obtained the results that confirmed two types of motor imagery: visual imagery
and kinesthetic imagery. We have analyzed averaged distributions of normalized sources power for the visual
imagery and kinesthetic imagery subgroups of volunteers and identified the main differences between these types
of motor imagery in terms of the excitation of sources of neural activity. We have applied statistical cluster-based
permutation test to identify the differences between the averaged distributions of normalized sources power for
visual and kinesthetic imagery.

Keywords: MEG analysis, source localization, beamformer technique, dynamic imaging of coherent sources,
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1. INTRODUCTION

Magnetoencephalography (MEG) and electroencephalography (EEG) are very popular and effective noninvasive
neuroimaging techniques.1–12 However, these methods do not provide access to the sources of neural activity but
represent an instant linear superposition of the activity of several sources.13–20 In other words, the same activity
area in the brain is usually registered by several adjacent sensors at once (the so-called “field spread” problem),
which complicates the correct interpretation of the obtained signals. This problem can be solved quite effectively
by analyzing neural interactions in the space of oscillatory activity sources in the brain. The characteristics of
sources (positions and power) can be reconstructed using special methods based on the solution of the so-called
inverse problem.13,21 Another significant reason for the transition to the source space is determining the actual
anatomical location of the interacting areas of the brain.

Mental imagination of movements referred to as motor imagery (MI)22 manifests as a result of the repeti-
tion of a given motor act in the working memory without any corresponding muscle movement. It is classified
into two categories: visual imagery (VI) and kinesthetic imagery (KI). While VI consists of visualization of the
subject moving a limb that does not require any special training or sense of the muscles, KI is the feeling of
muscle movement that can usually be achieved by specially trained persons.23 To understand and classify MI,
one can use methods of time-frequency and spatio-temporal analyses. The most common techniques use event-
related synchronization (ERS) and event-related desynchronization (ERD),24 power spectral density, wavelet
transform, empirical mode decomposition, common spatial patterns, spatio-decomposition, as well as their com-
binations.5,14,25–27 Also, for the classification of brain states associated with MI, machine learning and artificial
intelligence methods are applied to analyze EEG and MEG time series.2,8, 9, 11,28

In works,1,19 MEG studies of the features of event-related fields during the execution of imagery movements
were carried out at the sensor level. This work confirmed the existence of two types of motor imagery (kinesthetic
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Figure 1. Distributions of normalized sources power Davg averaged over the subgroup of volunteers (6 subjects) character-
ized by kinesthetic imagery plotted superimposed on the anatomical template MRI in slice mode for left and right arms
imagery movements (a and b) and left and right legs imagery movements (c and d). Frequencies of interest: 11 ± 2Hz.
The following abbreviations are used: LH – left hand, RH – right hand, LL – left leg, RL – right leg.

imagery (KI) and visual imagery (VI)) and revealed the differences between them in terms of characteristics of
the event-related fields. Namely, KI implies muscular sensation when performing an imaginary moving action
leading to event-related desynchronization (ERD) of motor-associated brain rhythms. On the contrary, VI refers
to the visualization of the corresponding action that results in event-related synchronization (ERS) of α- and
β-wave activity. Nevertheless, the analysis of differences at the source level during the execution of different
types of imagery movements remains a poorly studied issue here.

The goal of the present work is to investigate the features of each type of motion at the source level by MEG
data.

2. DESIGN OF THE EXPERIMENT

Brain magnetic fields were recorded in a magnetically shielded room with a whole-head Vectorview MEG system
(Elekta AB, Stockholm, Sweden) with 306 channels (102 magnetometers and 204 planar gradiometers) at the
Center for Biomedical Technology (Technical University of Madrid, Spain). The sampling frequency was 1000
Hz, and an online anti-alias bandpass filter between 0.1 and 330 Hz was utilized.
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Figure 2. Distributions of normalized sources power Davg averaged over the subgroup of volunteers (4 subjects) charac-
terized by visual imagery plotted superimposed on the anatomical template MRI in slice mode for left and right arms
imagery movements (a and b) and left and right legs imagery movements (c and d). Frequencies of interest: 11 ± 2Hz.
The following abbreviations are used: LH – left hand, RH – right hand, LL – left leg, RL – right leg.

Ten healthy untrained volunteers participated in the experimental study (8 males and 2 females between 20
and 31 years old). All subjects provided written informed consent before the commencement of the experiment.
The experimental studies were performed in accordance with the Declaration of Helsinki. Volunteers sat in
a comfortable reclining chair with their legs straight and arms resting on an armrest in front of them. All
participants were required to imagine moving their arms/legs (left or right) after being presented with audible
beeps as the cue.

The experiment was divided into four series. Each series consisted of an equal number of trials randomly
chosen for each of the limbs (left or right arm/leg motor imagery). Before changing the arm/leg, the subject was
informed on the screen about the type of subsequent task. The imaginary movement of each limb was counted
as one trial. The beeps were presented with time gaps randomly varied from 6 to 8 seconds. A 20-s gap after
finishing all trials for each limb and a resting 60-s interval between each series was provided.

3. METHODS

We removed artifacts in the MEG recordings, using the temporal signal-space separation method of Taulu and
Hari.29 Once the events were marked at the beginning of each limb movement imagination, we extracted the
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Figure 3. Clusters in the source space plotted superimposed on the anatomical template MRI in slice mode. The color scale
represents t-value as the result of the comparison between VI (any movement) and KI (any movement); ppairwise < 0.05,
pcluster < 0.025.

5-s trials just after these marks. Then, we redefined the length of every trial as [1 s, 5 s] to reduce the effect of a
transient process. As a result, we obtained at least 24 event-related trials for each limb of each volunteer. The
20-s trials corresponding to the resting state with closed eyes were also marked as the background activity of
each subject. We performed all further operations using the Fieldtrip toolbox.30

We applied Dynamic Imaging of Coherent Sources (DICS), a beamformer technique in the frequency domain,
allowing one to estimate the strength of oscillatory activity at any given location in the brain.30,31 As the
forward model, we used a semi-realistic head model developed by Nolte.32 To construct it, we used “Colin27”
head averaged template MRI33 available in FieldTrip, and the data of the subject head shape recorded by
Polhemus before the beginning of the MEG experiment. Head volume was discretized on a grid with 0.7 cm
resolution, and the source power for each of the 9025 grid points was computed. The frequency of interest was
11 Hz and the smoothing window was +/-2 Hz (α-rhythm).

Note, we performed reconstruction of the sources separately for all the 4-second trials, using the described
above DICS method with the prepared forward model and the aligned head model. As a result, for every trial,
we obtained the power distribution of the activity of the sources in the brain on the 3D grid with 9025 voxels:
Pi – for the i-th event-related trial and PBi – for the i-th background trial. Then we calculated the normalized
difference of the sources’ power distributions (performed the so-called baseline correction): Di = (Pi–PBi)/PBi.
This procedure is necessary to isolate the event-related pattern of sources activity. Finally, we averaged the
resulting normalized sources’ power distributions and obtained one distribution for the given volunteer — D.
This distribution was then overlaid on the template MRI scan. The above operations were performed for each
volunteer, and distributions of normalized sources power averaged over volunteers were also calculated.

We conducted a statistical cluster-based permutation test on the obtained sets to determine significant dif-
ferences between power distributions corresponding to the two given conditions.34,35 To match the discovered
significant clusters in the difference of the power distributions with the brain’s anatomical regions, we used the
Automated Anatomical Labeling (AAL) brain atlas.36

Proc. of SPIE Vol. 11847  118470T-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 07 May 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4. RESULTS AND DISCUSSION

The obtained results have confirmed the existence of two types of motor imagery in the source level. Indeed,
part of the volunteers demonstrates visual imagery, and the rest — kinesthetic imagery. Fig. 1 shows the
distributions of normalized sources power averaged over the KI subgroup of volunteers for left/right arms/legs
imagery movements. Fig. 2 demonstrates the similar distributions for the VI subgroup. One can see that visual
imagery is characterized by predominant activation of the occipital brain region in the α-band. This corresponds
to the activation of the visual cortex responsible for processing visual stimuli and imagination. On the contrary,
kinesthetic imagery is characterized by the increasing activity of the motor cortex. We emphasize that Fig. 1 and
Fig. 2 show the power distributions averaged over all subjects, and each subject is characterized by a different
degree of expression of KI or VI. The contralaterality feature is pronounced only for the KI of the left hand or
left leg movement (see Fig. 1a and c). For the KI of the right hand or right leg movement, we observe bilateral
activation of the motor cortex. Thus, the analysis at the source level has shown that kinesthetic imagery is
qualitatively similar to performing real movement, and visual imagery is similar to visual processing.

We performed a statistical cluster-based permutation test on the obtained datasets for all subjects and
determined significant differences between power distributions corresponding to visual imagery and kinesthetic
imagery (see Fig. 3). The statistical test confirmed that the main significant differences are concentrated in the
visual and motor cortex of the brain.

Note that both MEG and EEG were used in brain-computer interfaces (BCIs) for training MI classifiers.37

The authors demonstrated a rather efficient MI classification even without participants’ separation into KI and
VI categories. Simultaneously, it was shown that KI and VI scenarios affect the classification accuracy, e.g., the
accuracy rate obtained for KI was better than for VI.38 In this context, taking into account the division in KI
and VI groups is essential for BCI applications.6,39

5. CONCLUSION

Using the DICS method, we analyzed MEG data from the experiment, where participants performed imaginary
movements. We obtained the results at the source level that have confirmed the existence of two types of
motor imagery: visual imagery and kinesthetic imagery. We have analyzed and statistically compared averaged
distributions of normalized sources power for the VI and KI subgroups of volunteers and identified the main
significant differences between these types of motor imagery regarding the excitation of sources of neural activity.
The feature of contralaterality is pronounced only for the KI of the left hand or left leg movement. For the KI
of the right hand or right leg movement, we observe bilateral activation of the motor cortex. Thus, the analysis
at the source level has shown that kinesthetic imagery is qualitatively similar to performing real movement, and
visual imagery is similar to visual processing.
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