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Abstract—In the present paper, Recurrence Quantification
Analysis was applied to detect event-related potential P300 on
single-trial EEG. We demonstrated that the emergence of P300
is associated with EEG complexity increase. Besides, the RQA
measure of complexity based on recurrence times quantification
is sensitive enough to detect these changes on single-trial EEG.
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I. INTRODUCTION

Recurrence quantification analysis (RQA) is a powerful

tool for studying the behavioral characteristics of dynamical

systems. Designed for time series analysis, RQA has been

popularly applied in climate research [1], in the natural sci-

ences [2], and medicine [3]. Recently, there has been a growing

trend to use RQA to analyze the complexity of biological

signals. In particular, detecting transitions between different

dynamic modes in biological signals via RQA indicates normal

responses to external stimuli and pathological conditions.

RQA can successfully detect variability in heart rate [4],

arrhythmia [5], and tachycardia [6] using an ECG signal.

In addition, RQA is successfully used to analyze signals

of a neurophysiological nature. For example, the analysis

of the complexity of the EEG signal makes it possible to

detect epileptic activity [7] and functional characteristics of

brain activity in neurophysiological diseases [8]. Also, the

RQA complexity measures made it possible to determine the

beginning of hand movement and separate two types of motor

action based on the well-known property of contralaterality of

motor activity [9].

Within the framework of this work, we apply RQA to

detect the P300 potential occurring on the EEG after an audio

stimulus on the single-trial EEG. Potential P300 arises as a

subject’s response to a stimulus and is a positive deviation of

the EEG signal voltage, which occurs approximately 300 ms

after the presentation of the stimulus [10]. The P300 potential

is one of the most widely used markers for brain-computer

interfaces [11]. The properties of the P300 can potential

vary under the factors of age [12], [13], neurophysiological

characteristics [14], and neurodegenerative diseases [15].
As a rule, detection of P300 occurs on averaged EEG time

series. Such an assessment is not always practical due to

a significant spread of P300 in time on both between- and

within-subject levels [16], [17]. In addition, the use of P300

in brain-computer interfaces requires the development of new

methods to EEG analysis that are sensitive enough to detect

effects in single trials.
In this work, we propose an estimate of the EEG signals

complexity using RQA measures for the single-trial detection

of P300. RQA measures are a quantitative assessment of

various structures on recurrence plots, which is a visualization

of the fundamental property of dynamical systems to repeat

their states over time.
In this work, we propose an estimate of the EEG signals

complexity using RQA measures for the single-trial detection

of P300. RQA measures are a quantitative assessment of

various structures on recurrence plots, which is a visualization

of the fundamental property of dynamical systems to repeat

their states over time. We demonstrate that the local increase

of entropy-based RQA measure indicates the presence of

P300. We show that detecting ERP using RQA measures

of complexity is a promising approach for potential brain-

computer interface applications.

II. METHODS

A. EEG dataset
We performed a single-session sensorimotor integration

training with 13 volunteers (25.5 ± 5.3 y.o.). Subjects per-

formed one of the two types of motor activity depending on

the audio command:

1) short beep (250 ms) – clench left hand into a fist;

2) long beep (500 ms) – clench right hand into a fist.

The first audio command was followed by the second of

the same duration, which was a cue to relax the corresponding

hand. The timing of each epoch was chosen randomly in the

interval [4,5] sec, and the pause between epochs was [6,8] sec.
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Fig. 1. Sensor-level spatio-temporal cluster analysis of poststimulus EEG. A – map of the time-averaged t-statistic for the obtained cluster. White points
indicate EEG sensors comprising these clusters. B – sensor-averaged EEG time series. Shading highlights the time interval within which the significant
within-group differences are observed.

Subjects were seated in a comfortable chair with hands

placed on the armrest to avoid non-task-related muscle tension.

Each subject performed N = 30 movements with each hand.

We used EEG-amplifier ”Encephalan EEGR-19/26” (Tagan-

rog, Russia) that records EEG signals sampled on 250 Hz

using an extended EEG-sensor placement system ”10-20”. We

applied Notch filter to remove 50 Hz frequency component.

Additionally, ocular and muscular artifacts were removed

using the independent component analysis, and the final EEG

dataset was filtered with a 5th order Butterworth filter in the

range of 1-40 Hz.

B. RQA

Using the fundamental property of all dynamical systems

to recur, we can determine the recurrence matrix as:

Ri,j = Θ(ε− ||xi − xj ||), i, j = 1, ..., N, (1)

where N is a number of considered states xi, ε is a recurrence

threshold, || · || is a Euclidian norm, and Θ is a Heaviside

function. Recurrence plot (RP) is a visualization of the recur-

rence matrix consisting of ”white” (non-recurrent) and ”black”

(recurrent) points. Both recurrent and non-recurrent points

form structures, such as vertical/horizontal and diagonal lines.

RQA measures reveal the complexity features of considered

time series via quantification of these structures. In the present

research, we used measures of determinism (DET) and recur-

rence time entropy (RTE).

Determinism provides an assessment of ”black” diagonal

lines. A diagonal line means that two segments of trajectory

were in each others’ neighborhood for a time equal to the

length of the line:

DET =

∑N
l=lmin

lP (l)∑N
l=1 lP (l)

(2)

where lmin = 2 is a length of the shortest considered line.

The high DET of the time series indicates that the system is

regular and less complex.

”White” vertical lines are also the essential structures that

visualize the recurrent times, i.e., the time that the system

requires to repeat its’ previous state. These structures can be

quantified with the RTE measure:

RTE = − 1

lnTmax

Tmax∑
tw1

p(tw) ln p(tw) ∈ [0, 1], (3)

Here, Tmax is a maximum recurrence time, p(tw) is a

probability to find a ”white” line of exact length tw. RTE

is often used to detect transitions of the systems’ behavior

from chaotic to periodic and vice versa. We performed RQA

of EEG time-series in the floating window 50 dp wide (200

ms) and with the step of 2 dp (8 ms).

III. RESULTS

At the first step, we localized the area of significant

brain activity associated with P300. Fig. 1 demonstrates the

results of the spatio-temporal cluster-based permutation test

(tcritical = 3.05, ppairwise = 0.005). The test revealed a

significant cluster consisting of 12 sensors in the left motor

and temporal lobes with the shift to the right motor lobe

(see Fig. 1A). At the same time, the test highlighted the

significant time interval 292-352 ms, which is consistent with

the traditional ideas of P300 localization (see Fig. 1B).

Next, we performed RQA of the EEG time series. Fig. 2A

demonstrates the obtained time dependencies of considered

RQA measures averaged over the significant cluster from

Fig.1A. Note that the time dependence of ΔRTE has a local

maximum in the time interval 152-452 ms, which covers

the time when P300 is expected. On the other hand, ΔDET

demonstrated a significant increase after 352 ms. In our

previous research, we revealed the link between DET increase

and motor execution [9]. However, the results indicate that the

measure based on the recurrent points is relatively insensitive

for the proper detection of ERPs.

On the contrary, the ΔRTE measure based on the ”white”

lines indicates the link between P300 with a localized burst in

the complexity of the EEG signal in the corresponding time
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Fig. 2. A – time dependencies of RQA measures averaged over a group of subjects. Time series are presented with standard deviation (gray semi-transparent
area). The dotted lines mark the time intervals with the most significant deviations of the measures from the zero level. B – RQA of the single-trial EEG
corresponding to the P300 potential. The trials are averaged over the significant cluster from Fig.1A. The dotted lines indicate the time interval 152-432 ms,
which corresponds to the area of significant deviation of the RTE measure from the zero level.

interval. An increase in the number of long ”white” lines,

meaning an increase in recurrent times, indicates the transition

of the EEG signal to a more complex, less regular state.
The presence of a statistically significant time interval on

the ΔRTE measure indicates the reproducibility of this effect

in the group of subjects. Fig. 2B illustrates the P300 ERP

detection on the single-trial EEG averaged over the significant

cluster identified at the previous stage. While the ΔDET

measure does not show any significant effect associated with

ERPs, the ΔRTE measure has a pronounced peak, which fits

into the previously identified range of 152-452 ms for each

trial. This result indicates that the RTE measure is capable to

detect even such subtle characteristics of the brain electrical

activity as ERP P300, occurring on the single-trial EEG.

A. Conclusions
In the present paper, we proposed an approach to detect

P300 potentials on single-trial EEG via RQA measures of

complexity. We demonstrated that the RTE quantifier based

on the recurrence times is sensitive to the changes of EEG

signals complexity associated with stimulus perception. Our

results indicate that RQA is a promising method for possible

BCI applications.
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