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ABSTRACT

In this paper we study the spiking behaviour of a neuronal network consisting of Rulkov elements. We find
that the regularity of this behaviour maximizes at a certain level of environment noise. This effect referred to
as coherence resonance is demonstrated in a random complex network of Rulkov neurons. An external stimulus
added to some of neurons excites them, and then activates other neurons in the network. The network coherence
is also maximized at the certain stimulus amplitude.
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1. INTRODUCTION

As all real systems, the neural systems are noisy. Noise can lead to increase or decrease of order in the dynamical
systems under noise.1–3 To be mentioned here are the effects of noise induced order in chaotic dynamics,4–6 syn-
chronization by external noise,7,8 and stochastic resonance.9–12 Also, noise has been shown to play a stabilizing
role in ensembles of coupled oscillators and maps.13,14 Especially interesting is the phenomenon of stochastic
resonance, which appears when a nonlinear system is simultaneously driven by noise and a periodic signal.15–18

At a certain noise amplitude the periodic response is maximal.

The interest in mathematical modeling of neuronal synchronization has significantly increased after neu-
robiological experiments with two electrically coupled neurons,19 where various synchronous states have been
identified. In order to simulate cooperative neuron dynamics, numerous models based on either iterative maps
of differential equations in various coupling configurations have been developed.19 Depending on the coupling
strength and synaptic delay time, coupled neurons generate spike sequences that are matching in their timings,
or bursts either with lag or anticipation.20 When three or more oscillators are accounted for a large number of
coupling configurations can be realized. In the theory of graphs or complex networks, these basic configurations
are called network motifs.

We explore a simple neural model, the Rulkov map.21,22 Although this model is not explicitly inspired by
physiological processes in the membrane, it is capable of generating extraordinary complexity and quite specific
neural dynamics (silence, periodic spiking, and chaotic bursting), thus replicating to a great extent most of
the experimentally observed regimes,19 including spike adaptation, routes from silence to bursting mediated by
subthreshold oscillations, emergent bursting, phase and antiphase synchronization with chaos regularization,21

and complete and burst synchronization.

Further author information: (Send correspondence to A.V. Andreev)
A.V. Andreev: E-mail: andreevandrei1993@gmail.com, Telephone: +7 8452 99 88 32

Saratov Fall Meeting 2017: Laser Physics and Photonics XVIII; and Computational Biophysics 
and Analysis of Biomedical Data IV, edited by Vladimir L. Derbov, Dmitry E. Postnov, Proc. of SPIE  

Vol. 10717, 107172E · © 2018 SPIE · CCC code: 1605-7422/18/$18 · doi: 10.1117/12.2315092

Proc. of SPIE Vol. 10717  107172E-1

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 4/30/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



2. THE MODEL

Each neuron-like Rulkov element is described by the following system of equations with synaptic coupling:22

xn+1 = f(xn, xn−1, yn + βn), (1)

yn+1 = yn − µ(xn + 1) + µσ + µσn + µAξξn, (2)

where x is a fast variable associated with membrane potential, y is a slow variable which has some analogy with
gating variables, the parameters α, σ and 0 < µ ≤ 1 control individual dynamics of the system, ξ is a Gaussian
noise with a zero mean and standard deviation that equals 1, Aξ is noise amplitude. βn and σn are related to
external stimuli, f is a piecewise function defined as

f(xn, xn−1, yn) =



α/(1− xn) + yn, if xn ≤ 0

α+ yn, if 0 < xn < α+ yn and

xn−1 ≤ 0

−1, if xn ≥ α+ yn or

xn−1 > 0

(3)

It is constructed in a way to reproduce different regimes of neuron-like activity, such as spiking, bursting and
silent regimes.

The parameters βn and σn are defined as

βn = βeIextn + βsynIsynn , (4)

σn = σeIextn + σsynIsynn . (5)

Coefficients βe and σe are used to balance the effect of external current Iextn . βsyn and σsyn are coefficients of
synaptic coupling. Isynn is a synaptic current:

Isynn+1 = γIsynn − gsyn ∗

{
(xpostn − xrp), spikepre,

0, otherwise,
(6)

where gsyn is the strength of synaptic coupling, gsyn ≥ 0. Indexes pre and post correspond presynaptic and
postsynaptic variables respectively. The first condition in (6) corresponds to the presynaptic impulse (spike)
generation time moments and defined as xpren ≥ α+ypren +βpren . Parameter γ is a relaxation time of the synapse,
0 ≤ γ ≤ 1. It defines the part of synaptic current which preserve as in the next iteration. xrp is a reversal
potential that determines the type of the synapse: inhibitory or excitatory.

In our modeling we take values of the parameters α = 3.65, σ = 0.06 and µ = 0.0005 so that each neuron
being autonomous demonstrates silent regime dynamics. Also we assume βe = 0.133, σe = 1.0, βsyn = 0.1,
σsyn = 0.5 and xrp = 0.0. Investigation system is a motif of N neurons coupled to each other with a random
coupling strength gsyn and relaxation time γ. The values of them are randomly chosen from 0.0 to 0.1 and from
0.0 to 0.5 respectively. In the investigating system we apply an external stimulus to Na neurons. Stimulus is a
current impulse of the following form: from the start it equals to 0, at the moment ts when we apply it current
starts equal to A. The values of variables are chosen so that without the external stimulus each neuron is in a
silent regime but with starting the application of stimulus excited neurons start periodically generate spikes.
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3. THE RESULTS

From the system we take signals as time series of fast variable x from all neurons. Additionally we calculate
signal averaging over all neurons and analyse them. In figure 1 one can see these signals for systems of 100
neurons for different values of external stimulus amplitude. On them one can see phenomenon of grouping. It
consists in periodically spiking unexcited neurons so that one can see areas of time on time series (d, e, f) where
all unstimulated neurons spike and areas where they all are silent and these areas periodically follows one by
one.

Increasing the stimulus amplitude leads to increasing frequency of grouping and grouping durations and
decreasing time range between them. Also one can see decreasing oscillation amplitude of average signal.

In figure 2 one can see dependencies of time series of x from internal moise amplitude. Increasing noise
amplitude leads to decline of grouping effect. Also one can see oscillations in time area where external stimulus
amplitude A = 0 so noise starts excite neurons without any other stimulus.
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Figure 1. Time series of x variable averaging over all neurons (a), (b), (c) and time series of x variable for all 100
neurons where amplitude x is defined by color (d), (e), (f) for values of external stimulus amplitude A = 0.5, 1.5 and 2.5
respectively, Aξ = 0.1. We apply the external effect at the first 10 neurons, N = 100.
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Figure 2. Time series of x variable averaging over all neurons (a), (b), (c) and time series of x variable for all 100 neurons
where amplitude x is defined by color (d), (e), (f) for values of noise amplitude Aξ = 0.0, 1.0 and 2.0 respectively, A = 1.0.
We apply the external effect at the first 10 neurons, N = 100.

For analyse phenomenon of periodical grouping we calculate dependencies of signal-to-noise ratio (SNR)
from amplitude of external stimulus A and amplitude of internal noise Aξ. SNR measured from power spectra
of average signal in dB as an excess of main frequency amplitude over background noise.23,24

Figure 3,a shows signal-to-noise ratio dependence from external stimulus amplitude, on which one can see
the phenomenon of coherent resonance when for a certain values of external stimulus amplitude (A = 1.3− 1.6)
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SNR takes the maximum value. For A > 1.6 signal-to-noise ratio doesn’t change. Decreasing external stimulus
amplitude from 1.3 to 0 leads to decreasing SNR. From the power spectra (Fig. 3, b-e) one can see that the
main frequency stays the same for all values of external amplitude.
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Figure 3. (a) Signal-noise ratio (SNR) versus stimulus amplitude A for Aξ = 0.1, Na = 10, and N = 100 and (b-e) average
power spectra for (b) A = 0.4, (c) A = 1, (d) A = 1.5, and (e) A = 2.

A distinct behavior occurs in the dependence of SNR on the noise amplitude. As seen from Fig. 4, the SNR
has a maximum value in the noiseless network and decreases when the noise amplitude is increased. This means
that the network coherence is better without noise.
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Figure 4. (a) Signal-noise ratio (SNR) versus noise amplitude Aξ for A = 1, Na = 10, and N = 100 and (b-e) average
power spectra for (b) Aξ = 0.1, (c) Aξ = 0.8, (d) Aξ = 1.5, and (e) Aξ = 2.5.

Following the approach proposed by Pikovsky and Kurths,15 we characterized the coherence by the correlation
time defined as

τc =

T∑
n0

C(τ)2, (7)

where n0 is the number of iterations corresponding to transients, T is the total number of iterations in time
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series, C(τ) is the autocorrelation function given as

C(τ) =

〈
(xavr(n)− 〈xavr〉) (xavr(n+ τ)− 〈xarv〉)

〉〈
(xavr(n)− 〈xavr〉)2

〉 , (8)

where 〈...〉 is the time average after transients. The larger the correlation time, the better the coherence.

In Fig. 5 we plot the dependence of the correlation time on the stimulus amplitude A and noise amplitude
Aξ. The resonance behavior is clearly seen in all graphics. Comparing results from Figs. 3, 4 and 5 one can
see that characteristic correlation time behaves the same way as signal-to-noise ratio. According to the15 this
confirms the presence of coherent resonance phenomenon in the system.
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Figure 5. Characteristic correlation time τc versus (a) stimulus amplitude A (Aξ = 0.1, N = 100, Na = 10) and (b) noise
amplitudes (A = 1, N = 100, Na = 10).

4. CONCLUSION

The macroscopic signal from motif of Rulkov elements with random coupling between them and internal noise
presence under external stimulus demonstrates phenomenon of grouping when all unexcited neurons start spiking
periodically during the time interval. And at the averaging signal from all neurons we see periodically grouping.
Changing such parameters as amplitudes of external stimulus and internal noise we can see phenomenon of
coherent resonance when at the certain values of these parameters signal-to-noise ratio takes the maximal values.
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