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We study excitation and suppression of chimera states in an ensemble of nonlocally coupled oscillators
arranged in a framework of multiplex network. We consider the homogeneous network (all identical oscillators)
with different parametric cases and interlayer heterogeneity by introducing parameter mismatch between the
layers. We show the feasibility to suppress chimera states in the multiplex network via moderate interlayer
interaction between a layer exhibiting chimera state and other layers which are in a coherent or incoherent
state. On the contrary, for larger interlayer coupling, we observe the emergence of identical chimera states in
both layers which we call an interlayer chimera state. We map the spatiotemporal behavior in a wide range of
parameters, varying interlayer coupling strength and phase lag in two and three multiplexing layers. We also
prove the emergence of interlayer chimera states in a multiplex network via evaluation of a continuous model.
Furthermore, we consider the two-layered network of Hindmarsh-Rose neurons and reveal that in such a system
multiplex interaction between layers is capable of exciting not only the synchronous interlayer chimera state but
also nonidentical chimera patterns.
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I. INTRODUCTION

Currently, the research on collective behaviors of dynamical
systems is focused a great extent on the study of chimera
states [1–5] arising in ensembles of identical oscillator models
that are abundant in physics and biology. Chimera states,
characterized by a coexisting spatial pattern of coherent and
incoherent subgroups of dynamical elements in a network,
were discovered in 2002 by Kuramoto and Battogtokh [1].
They reported chimera states in a network of nonlocally cou-
pled nonlinear elements described by the complex Ginzburg-
Landau system [6] and then demonstrated in a network of the
Kuaramoto-Sakaguchi phase model [7]. However, in recent
studies, it was shown that such a symmetry breaking of a
complete coherent state into chimeralike states can emerge
in networks of oscillators with global coupling [5,8,9], and
nearest neighbor local coupling [10–12] too. Recent studies
further confirm that chimera states are not limited to phase
oscillators only, they can emerge in limit cycle and chaotic
systems [13], neural systems [14,15], time-discrete map [16],
and Boolean networks [17]. As a result, an amplitude-mediated
chimera has been proven [3] to be a reality which encourages
experimental verification and, in fact, it has now been
experimentally evidenced in chemical [18], electronic [19],
electrochemical [20], optoelectronic [21], and mechanical [22]
systems. However, studies of chimera states were confined so
far to the domain of a single-layer network. Among many
other effects associated with the emergence of chimera states,
important and less studied topics are the stability of chimera
states [23], how different isolated networks individually are in
any of the states, chimera, coherent, and even incoherent, may
be affected when they interact with each other. Obviously,
such a situation can appear in real systems, particularly

relevant to many areas of science (e.g., neuroscience [24,25])
and technology. Its consideration along with a theoretical
investigation demands due attention for prospective practical
use [26]. In this paper we address this issue of chimera states in
a framework of multilayer networks and explore the resultant
effect when they interact with other. Each layer consists
of nonlocally coupled identical oscillators and, separately,
may be in any of the states, chimera states, coherent, or
incoherent states. We consider both the homogeneous network
with all identical oscillators and the heterogeneous network
where each layer has identical oscillators but heterogeneity of
parameters exists between the layers. Such multilayer network
structure exists in the real world and has been widely used
currently both for the analysis of real data and explaining the
multilayer character of real-world networks [27,28]. From the
dynamical systems’ perspective, the multilayer formulation
has been applied to networks whose layers coexist or alternate
in time [28]. In both cases, the multilayer formulation allowed
synchronization regions that arise as a consequence of the
interplay between the layers’ topologies and their coupling
[29–31], and defined a type of synchronization based on the
coordination between the layers [32].

Generally, the multilayer network model is characterized
by nodes that have two types of links. One type establishes
an intracoupling interaction between the nodes located in the
same layer. The second type determines the intercoupling
of the dynamic elements between the layers. Depending on
the specific objectives of the multilayer configuration, the
interlayer relation between the elements of a network may
be quite different [29]. We focus on a multilayered network
in which interlayer relations match the model described in
a recent work [33]. Using this particular multilayer model,
we consider a different possible dynamical status: one layer
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sustains with chimera states and other layers may be in chimera
states, coherent, or incoherent states. We present examples
of two-layered and three-layered networks and demonstrate
that the original chimera states in isolated networks can
be suppressed and recreated by variation of the interlayer
coupling strength. Most importantly, we reveal that excitation
of the chimera state by multiplexing leads to the emergence of
an unknown kind of interlayer chimera state where all layers
in the network demonstrate the identical chimera pattern. To
clarify the presence of the observed phenomena we have stud-
ied the continuous model using the Ott-Anttonsen approach,
which results showed an excellent match with our numerical
simulations. Additionally, we examine the possibility to excite
this curious regime in the more realistic network of Hindmarsh-
Rose neurons arranged in two multiplexing layers. Indeed, in a
certain range of interlayer coupling strengths, this system can
exhibit the emergence of a chimera state in a population, which
is incoherent without the multiplexing interaction. Moreover,
depending on the value of interlayer coupling, a multiplex
interaction in this system can excite not only a synchronous
(identical through layers) interlayer chimera state, but also
nonidentical chimera states in interacting layers, that reveals
the complexity of emergent phenomena.

II. MULTILAYER NETWORKS

The multilayer network consists of N number of oscillators
in each layer where each node in all the layers is represented
by the Kuramoto-Sakaguchi (KS) phase model, ϕ

j

i (t) (i =
1,2, . . . N ; j = 1,2, . . . M) is the instantaneous phase of the
system; M is the number of layers. Our choice of a dynamical
system is motivated by the fact that the nonlocal interaction
in a network of KS phase oscillators is a paradigm of chimera
states [1,7] and since we focus here on chimera states in the
multilayered networks. A schematic diagram of a two-layered
network is shown in Fig. 1(a) where each node in each layer
has two types of links: (1) intralayer links (solid lines), and (2)
interlayer links (dashed lines). The intralayer links establish a
nonlocal interaction within the elements of the same layer and
the interlayer links connect the elements between the layers.
The phase dynamics of each node ϕ

j

i (ith node, j th layer) in
the multilayer network is described by

dϕ
j

i

dt
= ω

j

i − λ
j

1

2P j + 1

i+P j∑
k=i−P j

sin
(
ϕ

j

i − ϕ
j

k + αj
)

+ λ2

M

∑
l �=j

sin
(
ϕ

j

i − ϕl
i

)
, (1)

where ω
j

i is the natural frequency of the ith oscillator in the
j th layer, λ

j

1 and λ2 define the intra- and interlayer coupling
strengths respectively, Rj = P j/N is defined as the coupling
radius where P j is the number of neighboring oscillators each
oscillator is connected to, in both directions, in a j th layer; αj is
a phase lag parameter identical for all the oscillators in the j th
layer but can be chosen different in different layers to create
heterogeneity. We consider ω

j

i = 1.0 for all the oscillators
of all the layers. In the absence of interlayer coupling, i.e.,
λ2 = 0, individual networks of phase oscillators (1) demon-
strate chimera states when the value of αj remains close to
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FIG. 1. (a) Schematic diagram of inter- (dashed lines) and
intralayer (solid lines) links in a two-layered network whose node
dynamics is governed by phase oscillators and snapshots of phase
distributions ϕ

j

i for all the oscillators (i), illustrating the occurrence
of chimera states in the first (b) and the second (c) layers in absence
of interlayer coupling links. For illustration of nonlocal coupling, we
mark one node in each layer by a red circle which is connected to its
nearby neighbors on both sides within a radius R1 = R2 = R, where
R = 0.35. Each node is actually connected to nearby nodes by similar
manner at equal radius but not shown here for clarity of picture. Each
node in the upper layer is connected to its immediate bottom node in
lower layer.

π/2 (more precisely, for αj ∈ [1.45; 1.57]) for an appropriate
choice of λ

j

1.
For simplicity, we first consider the multiplex network as

consisting of two layers, M = 2. For this two-layered network,
we take the intralayer coupling strength as λ1

1 = λ2
1 = λ1.

By a choice of α1 = α2 = 1.45 and λ2 = 0, one can easily
obtain chimera states on both the layers as shown earlier
[1,2]. Snapshots of phase distribution in the two layers are
shown separately in Figs. 1(b) and 1(c) respectively for
P = 35, λ1 = 0.085. Two different spatial chimera patterns
emerge in two isolated layers due to a different choice of
initial distributions of phases in the layers,

ϕ1
i (0) =

{
π

(
4i
N

− 1
)
, i ∈ [

0,N
2

]
π

(
3 − 4i

N

)
, i ∈ [

N
2 + 1,N

] , (2)

ϕ2
i (0) =

{
π

(
1 − 4i

N

)
, i ∈ [

0,N
2

]
π

(
4i
N

− 3
)
, i ∈ [

N
2 + 1,N

]
.

(3)

We added small random fluctuations in the initial conditions
in both the layers. In order to confirm the existence of chimera
states, we use a statistical measure, a strength of incoherence
SIj [34] from a local standard deviation analysis, separately
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for both the layers. The SIj is defined as

SIj =
∑m

r=1 �
(
δj − σ

j
r

)
m

, (4)

where �(•) is the Heaviside step function, δj is a predefined
threshold value, m is the number of oscillators in each group of
equal length n = N/m, for which the local standard derivation
σ

j
r is calculated as

σ j
r =

〈√√√√1

n

rn∑
s=n(r−1)+1

(
ϕ

j

i − 
j
)2

〉
t

. (5)

Here 〈•〉t denotes averaging over time and 
j corresponds
to the phase averaged over all the oscillators in j th layer. A
value of SIj = 0 in each layer represents a coherent state while
SIj = 1 and 0 < SIj < 1 represents incoherent and chimera
states respectively.

III. EFFECT OF MULTIPLEXING: PHASE OSCILLATORS

To demonstrate the interaction between the layers with
different chimera patterns shown in Fig. 2(b) (keeping λ

1,2
1 =

0.085, P = 35), we increase the interlayer coupling strength
λ2 and observe the changes in the spatial pattern in both the
layers. The dependencies of SI 1,2 on the interlayer coupling
strength λ2 are presented in Fig. 2(a) (upper panel) in cross
(+) and solid lines.

One can see that an increase of interlayer interaction leads
to fluctuations, which, obviously, corresponds to the variation
of the number of elements, involved in the coherent and
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FIG. 2. (a) Strength of incoherence SI of upper layer (+) and
lower layer (solid line) in Fig. 1 against the interlayer coupling
strength λ2, a difference �SI = SI1 − SI2 between the layers obtained
for the same range of λ2. Snapshots of phase distributions obtained for
(b) asynchronous chimera states, λ2 = λ1

2 = 0.001, (c) synchronous
chimera states, λ2 = λ2

2 = 0.045. Locations of control points, λ1
2,λ

2
2

are shown by the arrows. α1,2 = 1.45.

incoherent subclusters. At the same time, both the values of SI1

and SI2 remain confined to the interval (0,1), which evidence
that chimera states exist in both the layers for a wide range
of λ2. In order to identify the relation between the chimera
states in different layers, we calculate the difference between
the strength of incoherence in each layer as �SI = SI1 − SI2.
For low values of λ2, �SI fluctuates indicating incoherence
between the two layers although individually they show
chimera states as clear from Fig. 2(b). For increasing λ2,
�SI becomes zero intermittently and is finally stabilized at
zero for λ2 > 0.02 as shown in Fig. 2(a) and this state is
characterized by the emergence of synchronous chimera states
which we define as interlayer chimera states. One can see that
an increase of interlayer coupling makes a transformation of
chimera states on both the layers [cf. initial states in Figs. 1(b)
and 1(c)] from an asynchronous to synchronous chimera states.
The phase distributions corresponding to the cases of spatially
asynchronous and synchronous dynamics of the layers are
shown in snapshots in Figs. 2(b) and 2(c) respectively. We
can easily locate coherent and incoherent subpopulations from
the snapshots (upper and lower plots) of instantaneous phases
of two oscillator populations (N = 100) in Fig. 2(b) where
their locations are different leading to asynchronous chimera
patterns. However, the chimera patterns are exactly the same
in Fig. 2(c) for a larger λ2 = 0.045.

Next we consider a heterogeneous system of two layers
when one layer survives with the chimera state as defined
above while the other one is changed to be either in a coherent
or an incoherent state in isolation (λ2 = 0). We address
the question once again of what happens when they start
multiplexing. In order to obtain coherent or incoherent states
in the ensemble of phase oscillators (1), we tune the phase
lag parameter α2 of the oscillators in the lower layer while
α1 = 1.45 is kept unchanged in the upper layer to maintain
chimera states. It is known that, for our choice of λ

1,2
1 = 0.085,

chimera states emerge in a range of αj ∈ [1.45; 1.57] while for
αj < 1.45 and αj > 1.57, the oscillators demonstrate coherent
and incoherent behavior respectively. Accordingly, we con-
sider two cases, the lower layer in the multilayer network (1)
is in (I) a coherent state for α2 = 1.2, (II) an incoherent state
for α2 = 1.7.

The phase distribution of all oscillators in both layers
is shown in Fig. 3 for two different cases (case I: upper
row, α1 = 1.45, α2 = 1.2; case II: bottom row, α1 = 1.45,
α2 = 1.7). Snapshots of instantaneous phases of all the oscil-
lators, in both upper and lower panels, are plotted for different
values of interlayer coupling: (a) λ2 = 0, (b) λ2 = 0.2, (c)
λ2 = 0.5. For case I, we find, in the upper panels, suppression
and re-emergence of chimera states with increasing λ2. In the
absence of interlayer coupling λ2 = 0, the upper layer shows
chimera states (red dots) and the lower layer exhibits a coherent
state (green dots) as shown in the left panel. With increasing λ2,
the chimera state in the upper layer is destabilized and, most
interestingly, passes through a phase of intralayer as well as
interlayer coherence for an intermediate λ = 0.2 [upper panel
in Fig. 3(b)] with complete suppression of chimera states.
However, for a larger λ2 = 0.5 the chimera pattern re-emerges
in both layers when an interlayer synchrony is established
[upper panel in Fig. 3(c)]. Additionally, we explore case II
when the upper layer is still kept in chimera states, however,
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FIG. 3. Multiplexing of layers: chimera-coherent layers (upper
row, α1 = 1.45, α2 = 1.2) and chimera-incoherent layers (lower row,
α1 = 1.45, α2 = 1.7). Snapshots of instantaneous phases of all the
oscillators (in both layers) are presented in the upper and lower panels
for different values of λ2: (a) λ2 = 0, (b) λ2 = 0.2, (c) λ2 = 0.5.

the lower layer is pushed to the incoherent state by a choice of
α2 = 1.7, in the absence of interlayer coupling [lower panel
in Fig. 3(a)]. With an increase of λ2, as shown in the series of
lower panels, the chimera states in the upper layer are again
suppressed for an intermediate λ2 value. But, in contrast to
complete coherence in both the layers as seen in case I, the
double layered network develops both intralayer and interlayer
incoherence for an intermediate λ2 = 0.2 value [lower panel
in Fig. 3(b)], however, the synchronous interlayer chimera
states emerge for larger λ2 = 0.5 [lower panel in Fig. 3(c)].
It should be noted that the obtained results remain valid for
the multilayer network of nonidentical oscillators where the
degree of heterogeneity is low enough to keep chimera states
initially stable on both layers.

We determine the SI1,2 values for both the layers in the
parameter plane (α1, α2) and plot them in phase diagrams for
different values of λ2 in Fig. 4. The regions corresponding
to the incoherent, the chimera and the coherent states are
marked as I (white region), II (gray region) and III (black
region) respectively for λ2 = 0. Figure 4(a) shows that, in the
absence of interlayer interaction, the chimera states can be
obtained in both layers for ranges of values, α1 ∈ [1.45; 1.57]
and α2 ∈ [1.45; 1.57] respectively. Clear boundaries exist in
the phase diagrams delineating the incoherent, coherent, and
chimera state (the area between two red dashed lines) regimes.
With the increase of coupling strength λ2, the layers start to
interact leading to the transformation of the phase diagrams
in the (α1,α2) plane as shown in Fig. 4(b). The boundaries
become of a fractal nature in both upper and lower panels in
Fig. 4(b), however, we still find a broad parameter regime of
chimera states. Finally, when the coupling strength is large
enough, the boundaries become much smoother once again
as shown in Fig. 4(c) where both layers demonstrate chimera
states for some relations between α1 and α2 where synchronous
chimera states emerge. For comparison, the parameter regions
of chimera states in isolated layers are still marked by
horizontal red dashed parallel lines in Figs. 4(b) and 4(c).
The interacting layers demonstrate chimera states for those
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FIG. 4. Phase diagram in the phase lag parameter plane (α1,α2)
where strength of incoherent is used for the first layer, SI1 (upper row)
and the second layer, SI2 (bottom row) to measure different patterns.
Plots in any row (upper or lower panels) are obtained for the different
values of interlayer coupling strength, (a) λ2 = 0.0, (b) λ2 = 0.02,
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and coherent state are marked as I (white), II (blue), and III (black)
respectively.

α1,2 values, which otherwise correspond to the coherent or
the incoherent dynamics in the absence of interlayer links
or vice versa exhibit fully coherent or incoherent states for
α1,2 ∈ [1.45; 1.57].

Finally, we extend our results to a three-layered multiplex-
ing network (M = 3) as shown in Fig. 5. The initial phases of
the oscillators in the third layers are arranged accordingly,

ϕ3
i (0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π − 8πi
N

, i ∈ [
0,N

4

]
,

−π + 2π
(

4i−N
N

)
, i ∈ [

N
4 + 1,N

2

]
,

π − 4π
(

2i−N
N

)
, i ∈ [

N
2 + 1, 3N

4

]
,

−π + 2π
(

4i−3N
N

)
, i ∈ [

3N
4 + 1,N

] (6)

with additive small random fluctuations.
The strength of incoherence SI1–3 in the parameter plane

(α3,α∗) is shown in Fig. 6 for all three layers in absence of
the interlayer coupling (left column) and for strong inter-layer
interaction (λ2 = 0.5) (right column). The surfaces within the
columns correspond to the first (a), second (b), and third (c)
layers respectively. The value of α∗ = α1,2 corresponds to the
simultaneous change of the α parameter in the first and second
layers. All three layers are synchronized for large interlayer
coupling strength and demonstrate a synchronous interlayer
chimera state for the same values of the phase lag. The addition
of a third layer leads to a broadening of the parameter space
of interlayer chimera states. Moreover, similar behavior is
observed in further increasing of the number of layers in this
multiplex network.

IV. ANALYTICAL RESULTS

We carry out an analytical study of the multiplex network
of phase oscillators and show that the observed chimera
patterns do not depend on the number of oscillators in each
layer. We restrict our analysis to a multilayer network of
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FIG. 5. A schematic diagram of multiplex network with three
layers. Each layer is nonlocally connected with P 1,2,3 = P number
of neighbors in each direction. The interlayer connections between
the layers 1 and 3 are shown by dashed lines. Note that only few
nodes from second to first layer and third to first layer are only shown
for clarity of picture. In reality, all nodes in each layer are connected
to its immediate bottom node.

two interacting layers. We have applied the Ott-Antonsen
(OA) approach [35–38] to reduce the infinite-dimensional
network of the Kuaramoto-Sakaguchi phase model to the
systems of two-dimensional differential equations. Although
OA anzatz is generally used in the case of coupled nonidentical
oscillators with different natural frequencies, this method
is also effectively applied to the analysis of homogeneous
networks [39–42].

In the framework of this approach we describe the dynamics
of the network in terms of probability density function (PDF),
defined for both the layers of the multiplex network as
f 1(x,ϕ,t) and f 2(x,ϕ,t). As the number of oscillators is
constant in time we can write the continuity equation for PDF,

∂f 1,2

∂t
+ ∂(f 1,2v1,2)

∂ϕ1,2
= 0, (7)

where v1,2 according to (1) is

v1,2 = dϕ1,2

dt
= ω − 1

2ı
{r1,2eıϕ1,2 − r̄1,2e−ıϕ1,2}; (8)

the overbar indicates complex conjugate and r is the order
parameter written in the following form:

r1,2 = eıα1,2
λ1

2R

∫ 1

0
G(x − y)

∫ 2π

0
f 1(y,ϕ,t)e−ıϕdϕdy

− λ2

2

∫ 1

0
δ(x − y)

∫ 2π

0
f 2(y,ϕ,t)e−ıϕdϕdy, (9)

where G(x − y) is the intralayer coupling kernel,

G(x − y) = H {cos [(x − y)2π ] − cos(R1,22π )}. (10)
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phase lag parameters (α∗,α3), where α∗ = α1,2. The plots within a
column are obtained for the different values of interlayer coupling
strength λ2: λ2 = 0.0 (left column) and λ2 = 0.5 (right column)

The coupling kernel G(x − y) written in this form perfectly
fits the way of intralayer nonlocal coupling in our numerical
simulation. H (x) in (10) is the Heaviside step function.
We are looking for the solution f 1,2(x,ϕ,t) in the form of
Fourier series taking into account the OA ansatz fn(x,ϕ,t) =
a(x,ϕ,t)n:

f 1,2(x,ϕ,t)

= 1

2π

(
1 +

∞∑
n=1

{a(x,t)1,2}neınϕ + c.c.

)
. (11)

Substituting (8)–(11) to (7) we obtain the final equation,

∂a1,2

∂t
+ ıωa1,2 + 1

2
[r̄{a1,2}2 − r] = 0, (12)

where the order parameter with respect to the OA ansatz
becomes

r1,2(x,t) = λ1

2R

∫ 1

0
G(x − y)a1,2(y,t)dy

− λ2

2

∫ 1

0
δ(x − y)a2,1(y,ϕ,t)dy. (13)
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FIG. 7. Spatiotemporal evolution of |a|1 (a) and |a|2 (b) in two
layers. Phase distributions f 1(x,ϕ) (c) and f 2(x,ϕ) (d) after finishing
the transient process. Plots are obtained for α1,2 = 1.45, R1,2 = 0.35,
λ1 = 0.085, λ2 = 0.

To determine the phase distribution we substitute OA ansatz
a1,2 = |a|1,2e−jψ1,2

to (11):

f 1,2(x,ϕ,t)

= 1

2π

1 − {|a|1,2}2

(1 − |a|1,2)2 + 2|a|1,2
(
1 − cos[ϕ − ψ1,2]

) . (14)

Here |a|1,2 is a maximum value of the phase distribution
and ψ1,2 is a phase value corresponding to the distribution
maximum.

Let us discuss the results that we have obtained in the
framework of the analytical model. In Figs. 7(a) and 7(b)
we present the space-time evolution of |a|1,2 for the different
layers in the absence of coupling between two layers. The
spatial distributions of phase f 1,2(x,ϕ) are also presented
in Figs. 7(c) and 7(d). One can easily compare these plots
with the results of the numerical simulation shown in Fig. 1.
With the same network parameters α1,2 = 1.45, R1,2 = 0.35,
λ1 = 0.085, λ2 = 0.0 and initial conditions we observe the
same behavior on different layers of the multiplex network.
After the transient process, the chimera patterns emerge in
both layers. Wherein the first layer is characterized by the
coherent phase regions at two ends and the incoherent pattern
in the middle, at the same time, the inverse chimera pattern sets
in the second layer. It is clear that the analytical model based
on the assumption of an infinite number of oscillators perfectly
describes the network behavior and repeats the results of
numerical simulation of N = 100 Kuramoto-Sakaguchi phase
oscillators. At the same time, we have numerically analyzed
the network of N = 2000 KS oscillators and obtained the same
results of coherent pattern formation.

The introduction of interlayer coupling to the analytical
model gives us the following results. In Fig. 8 the snap-
shots of the layers at different values of interlayer coupling
level are presented. In this case, it is more suitable to
analyze the behavior of the complex OA ansatz a1,2(x) in
terms of its absolute value |a|1,2(x) and argument ψ1,2(x)
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FIG. 8. Snapshots of the upper layer (upper row) and the lower
layer (bottom row) states at the different vales of interlayer coupling:
(a),(b) λ2 = 0.015, (c),(d) λ2 = 0.045.

distributed in space. At low values of interlayer coupling
strength λ2 = 0.015, we observe the asynchronous interlayer
chimera between the upper [Fig. 8(a)] and lower layers [Fig.
8(b)]. In this case the chimera state does sufficiently differ
from one obtained in the absence of interlayer coupling.
It is still characterized by the existence of coherent and
incoherent areas herewith with |a| < 1 and the randomly
distributed phase ψ in the incoherent region. Increasing the
value of interlayer coupling strength λ2 = 0.045 leads to the
synchronous chimera state between the upper and lower layers
and both of them demonstrate identical behavior [Figs. 8(c) and
8(d)]. It is easy to see that in general the phase is randomly
distributed over the space but nevertheless the small areas of
coherent dynamics exist: we obtain the interlayer chimera
state. Notably, in spite of the random phase distribution the
absolute value |a| equals 1 all over the space. It means that the
synchronization between layers totally determines the phase
behavior at any point of space and the phase distribution
f 1,2(x,ϕ) has a form close to Dirac δ function centered at
phase ψ(x) as |a|(x) → 1. It becomes clear that from the point
of view of intralayer interaction this state is incoherent but the
coherence appears between interacting layers. Such behavior
of a multiplex Kuramoto-Sakaguchi phase oscillator network
with nonlocal coupling described by means of an analytical
model coincides with the results obtained in the framework
of numerical simulation (Fig. 2). So the analytical study of
the interlayer network interaction confirms the existence of
the synchronous interlayer chimera state behavior observed
during the numerical simulation.

V. MULITLAYER NETWORK: HINDMARSH-ROSE
NEURONAL MODEL

We also reveal the observed phenomena in a more realistic
two-layered multiplex network of the Hindmarsh-Rose (HR)
neuron systems. This HR model is more realistic because
depending upon the parameter values, an individual oscillator
exhibits different types of behaviors, such as square-wave
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bursting (chaotic and periodic), mixed mode bursting, spiking,
and plateau bursting, etc. Recently, existence of chimera states
was reported in a single layer network of HR-neuronal models
using nonlocal [10,14] and local [43] coupling interaction.
Here we show how multiplex interaction between layers of
Hindmarsh-Rose neurons influences chimera states in the
system, and examine the effect of delay in this coupling.

We consider a network consisting of two multiplexing
layers of 100 HR systems with more realistic chemical synaptic
nonlocal intralayer interaction and interlayer synaptic coupling
with the presence of delay τ ,

ẋ
j

i = a
(
x

j

i

)2 − (
x

j

i

)3 − y
j

i − z
j

i

+ λ
j

1

2P j

(
vs − x

j

i

) k=i+P j∑
k=i−P j

c
j

ik�
(
x

j

k

)

+λ3
(
vs − x

j

i

)∑
l �=j

�
[
xl

i (t − τ )
]

ẏ
j

i = (a + α)
(
x

j

i

)2 − y
j

i ,

ż
j

i = c
(
bx

j

i − z
j

i + e
)
, i = 1,2, . . . ,N, (15)

where the state variable x represents the membrane potentials
and, y and z correspond to the transport of ions across the
membrane through the fast and slow channels respectively. The
parameter c represents the ratio of the slow-fast time scale. The
synaptic coupling function �(x) is a nonlinear input-output
function as

�(x) = 1

1 + e−λ(x−�s )
, (16)

where λ > 0 determines the slope of the function and �s is the
firing threshold. We take the reversal potential vs = 2.0 so that
vs > xi for all time t for which the synapses are excitatory and
the input from other neurons to the ith neurons can enhance
the activity. We choose the synaptic threshold �s = −0.25
and slope of the sigmoidal function λ = 10. Here λ

j

1(j = 1,2)
is the intralayer coupling strength for the j th layer. λ3 is
the interlayer synaptic coupling strength and τ is the time
delay in transferring the information between the layers. The
connectivity matrix C = (cj

ik)(n×n) is such that c
j

ik = 1 if the
ith neuron is connected with kth neuron in the layer j and
zero otherwise. P j (j = 1,2) is the number of neighboring
oscillators in both directions connected with each oscillator
in each layer. The individual oscillator exhibits square-
wave bursting for a choice of parameters, a = 2.8, α = 1.6,
c = 0.001, b = 9, e = 5.

At first, we examine how interlayer coupling effects the
dynamical state of the system in the absence of time delay
between layers (τ = 0). For the first layer we set the value
of intralayer coupling strength corresponding to incoherent
dynamics λ1

1 = 0.2, while another one exhibits the chimera
state λ1

1 = 1.0. This is illustrated in Fig. 9(a), where the
snapshots of i are depicted for both layers in the absence
of interlayer coupling (λ3 = 0). Unlike the KS model, this
time the activation of interlayer coupling (λ3 = 0.16) leads
to the emergence of independent (i.e., asynchronous between
layers) chimera states in both interconnected networks that
is depicted in Fig. 9(b). By turn, the increasing of interlayer

λ3
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FIG. 9. Snapshots of xi of the HR layers for (a) incoherent state
in one layer (red dots) at λ1

1 = 0.2 and chimera state in second
layer (green dots) at λ2

1 = 1.0 and λ3 = 0, (b) asynchronous (ASC)
chimera state at λ3 = 0.16, and (c) synchronous chimera (SC) state at
λ3 = 0.22. (d) Dynamical regimes emerging in the network in a
parameter space (λ3,τ ). The intralayer couplings are fixed as λ1

1 = 0.2
and λ2

1 = 1.0. Number of oscillators in each layer, N = 100.

coupling (λ3 = 0.2) results in transition to identical regime in
both layers as is clearly seen from Fig. 9(c). This illustrates
the fact that in the network of Hindmarsh-Rose neurons
the multiplex interaction can excite not only a synchronous
interlayer chimera state, but also nonidentical chimera states
in layers.

Next we consider the presence of interlayer synaptic
coupling delay (τ �= 0) and check the interaction between the
layers by changing the interlayer coupling strength λ3. To
get a complete overview of different spatiotemporal patterns
realizing in the system, we depict the observing regime in the
(τ , λ3)-parameter space, shown in Fig. 9(d). The latter shows
separate regions of incoherence, coherence, and synchronous
chimera states, supplemented by areas of multistable dynamics
of incoherence or asynchronous chimera and synchronous or
asynchronous chimera. As mentioned above, the increasing
of λ3 leads to the transition from incoherence to independent
chimera states in layers (ASC), and then to identical chimera
(SC). Surprisingly, the region of synchronous chimera is
divided from the coherent area by ASC or SC multistability,
i.e., some increasing of λ3 from the SC region induces a
break of synchrony between layers. At the same time, any
strong dependence from synaptic coupling delay (τ ) cannot be
observed.

VI. CONCLUSION

We explored chimera states in the framework of a mul-
tilayered network where each layer represents an ensemble
of nonlocally coupled Kuramoto-Sakaguchi phase oscillators.
We considered a homogeneous multilayered network where all
the oscillators are identical, and a heterogeneous multilayered
network where all the oscillators in each layer are identical
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but there exist parameter mismatches between the layers. In
the case of the two-layered network with identical parameters
of layers, we observed different chimera patterns in layers for
two different sets of initial phase distributions, which emerge
into synchronous chimera states for large interlayer coupling
interaction. Interesting is the case of networks composed from
layers with different parameters, so that one layer is kept in
the chimera state while the other layer is in either the coherent
state or the incoherent state. Here we observed a suppression
of the chimera state for moderate coupling when both layers
could be almost in a coherence or an incoherent state that
depends upon the status of the isolated second layer. However,
synchronous chimera states or interlayer chimera states could
re-emerge in the layers for larger inter-layer coupling.

We studied the interaction between two layers of the
multiplexing network of phase oscillators from the viewpoint
of an analytical model based on the infinite number of
oscillators assumption proposed by Ott and Antonsen. We
proved the possibility of interlayer chimera state excitation
with increasing interlayer coupling strength. At the same time
we have shown that the observed effect does not depend on
the number of interacting oscillators.

We extended the results to a three-layered multiplexing
network where we observed similar synchronous chimera

states for large interlayer coupling. Noteworthy that the
parameter space for the emergence of synchronous chimera
states was broadened by the addition of a third layer. This
clearly demonstrated an enhancement of the stability of
chimera states by the interlayer interactions. The latter was also
proven by evaluation of the more realistic model of Hindmarsh-
Rose neurons, which were arranged in a two-layer multiplex
network. We show that variation of interlayer coupling enables
us to excite both identical (synchronous) and individual
(asynchronous) chimera states in the interacting populations of
model neurons. Therefore, in this system an interlayer coupling
delay does not affect the dynamical features reported above.
We suppose that the described phenomena could take place in
real-world networks, which are usually studied, in recent times,
using the framework of a multilayered model [27–32,44–47].
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