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Abstract—In this paper we considered the application of
unsupervised machine learning for labeling epileptic human
electroencephalogram. We tested the performance of several
algorithms specifically designed for anomaly detection.

Index Terms—epilepsy, electroencephalogram, Machine Learn-
ing, anomaly detection.

I. INTRODUCTION

Epilepsy is the one of the most common neurological dis-
eases characterized by uncontrollable recurrent seizures [1].
Epileptic seizures are usually accompanied by uncontrolled
convulsions or absence state, which can be dangerous for
both the patient and the others [2]. Thus, epilepsy treatment,
including early diagnostics, is a task of great importance in
modern medicine. Epilepsy is commonly diagnosed manually
by medical experts who review electroencephalogram (EEG)
in search of seizure episodes [3]. Random and sparse nature
of epileptic seizures leads to a frequent situation when hour-
long EEG recording contains only minutes of epileptic activ-
ity. Therefore, diagnostics demands a lot of time and effort
from the expert, and automation of this process is of great
demand. It is widely assumed that the cause of the seizures
is spontaneous synchronous activity of neurons in the brain
[4], [5]. Knowledge on features of this activity can be used to
develop approaches for reducing expert’s workload in epilepsy
diagnostics [6]-[8]. One way to do it is to implement machine
learning (ML) techniques for automated data labeling and
classification [9], [10]. Today many researchers use supervised
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ML algorithms for this task [11]. However, this approach
has certain limitations, that include dependence on prelabeled
data and high possibility of overfitting. In this work we
consider another approach — unsupervised ML; we tested
the performance of of several unsupervised ML algorithms
and assess the possibility of their application in real medical
practice.

II. MATERIALS AND METHODS
A. Machine learning methods

Supervised ML methods require data labeling to learn
relationship between features and labels. Unsupervised meth-
ods usually aim to separate normal data from outliers, and
thus these methods are called anomaly detection algorithms.
Epileptic seizures can be considered as certain type of outliers
[12], [13], which makes unsupervised ML methods a great
choice for automatic labeling of epileptic EEG.

In this work five popular unsupervised algorithms were
considered: One-Class Support Vector Machine (OCSVM), k-
Nearest Neighbors (kNN), Local Nearest Neighbors Distance
(LNND), Local Outlier Factor (LOF) and Isolation Forest (IF).
OCSVM takes features to the higher dimensional space and
constructs hyperplanes capable of separating normal data from
outliers [14]. kNN calculates distances between each point
and its k-nearest neighbors [15], it then labels the nth fraction
of data points with the largest average distance to neighbors as
outliers. LNND works like kNN, but it divides distance from
point a to its nth nearest neighbor (point ») by the distance
from b to its nth nearest neighbor [16]. LOF calculates density
arrangement of points around each point and chooses data with
lowest density [17]. IF separates data space by a randomly
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selected value trying to isolate a specified percentage of data
points [18].

B. Dataset

Database with EEG records was provided by the National
Medical and Surgical Center named after N. I. Pirogov of the
Russian Healthcare Ministry. All patients gave their consent
to participate in the experiment. The recording was made
during the daily activities of patients with purpose to confirm
epileptic status. The record’s duration varied from 8 to 84
hours according to patient conditions and number of detected
seizures needed to confirm the diagnosis. All seizures occurred
spontaneously. The data was prelabeled by medical expert.
Database contains EEG data of 80 patients with diagnosed
focal epilepsy.

EEG records were obtained from 25 channels arranged
according t0”10-20” layout. Raw signals were preprocessed
by continuous wavelet transform (CWT): wavelet power was
calculated and averaged in 60-second time intervals and across
all EEG channels. CWT is a powerful instrument of time-
frequency analysis of EEG signals and it can be used to extract
certain feautrres from EEG [19]-[21]. In the resulting data
each 60-second interval was considered as an event character-
ized by a vector of 300 values. These values correspond to
the spectrum of wavelet power in the 1-30 Hz band divided
into bins with a 0.1 Hz step. To reduce the complexity of
the data, we additionally implemented principal component
analysis (PCA) [22]. Then some feature types were chosen
for consideration:

o Raw 30 Hz — 300 values vector;

o Raw 3 Hz — subvector of the first 30 values;

¢ Mean 30 Hz — the mean of 300 values;

e Mean 3 Hz — the mean of the first 30 values;

o PCA 30 Hz — PCA-based feature obtained after decom-
posing 300 values and considering 4 principal compo-
nents that explain 90% of the variance

e PCA 3 Hz — PCA-based feature obtained after decom-
posing 30 values and considering 4 principal components
that explain 98% of the variance

C. Models training

Each ML algorithm has hyperparameters — parameters that
are chosen by user to control learning process and don’t
change during training. Optimal combination of hyperparam-
eters may improve model results. Therefore, before models
training the hyperparameters tuning using Grid Search method
from Scikit learn library was applied to each model and feature
type (i.e., this process was done 30 times). It is important to
note that there was a class imbalance in the data (the number of
normal data instances greatly exceeded the number of outliers).
Thus, F1 score [23] was chosen as a function for assessing
the optimality of the combination of hyperparameters and the
quality of the models:

2 * precision x recall
Flscore =

* 100% (1)

precision + recall
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recall = * 100% 3)

TP
TP+ FN
where TP — true positive, FP — false positive, FN — false
negative.

After hyperparameters tuning, individual model was trained
for each patient because of high EEG variability. Performance
of method was calculated as averaged F1 score of 80 models.

III. RESULTS AND DISCUSSION

Results obtained after training are showed in Table L.

It is clearly seen that obtained F1 scores are relatively low.
For a complete understanding of the results, it is better to
consider the violin plot, which shows the distribution of F1
score values in the group of models that showed the best results
(Figure 1). This plot demonstrates that there is an imbalance
in distribution of F1 score values in the group. There is a
considerable amount of models with both high (0.6 —0.8) and
very low (~ 0) F1 scores, which ultimately leads to mediocre
group-average F1 scores. The most likely reason is that all
unsupervised methods are based on the distance between data
points. EEG signal contains artifacts with amplitude that can
significantly exceed an epileptic seizure, therefore, the model
labels artifacts as outliers. Of course, artifacts can be removed
from the data before training, but this requires time on the
part of the expert, which contradicts the idea of our work and
unsupervised approach in general.

It is curious that kNN, LNND and LOF methods have
approximately the same principle of operation, however, there
are much more LNND and LOF models with an F1 score of
1 than kNN. Perhaps the reason is that KNN uses the common
distance between points, while LNND and LOF calculate
the local distance. Consequently, it is easier to distinguish a
seizure from normal data and a fracture of artifacts by its local
distance to its nearest neighbors. This means that there are
more anomalous points near the artifacts than near the seizures.
Based on this, it can be assumed that after averaging the data
in shorter time intervals, these models would be able to better
distinguish seizures from artifacts. But this only applies to
cases where the models were trained on data with a frequency
range of 30 Hz. In other cases, LNND and LOF are inferior
to kNN. Most likely, the 3 Hz range is ill-suited for separation
seizures from artifacts.

Poor OCSVM results suggest that there is no hidden dif-
ference in the EEG data between seizures and other points.
Therefore, the transfer of data to a higher dimension didn’t
give a significant improvement in performance.

IF is partly based on randomness when it chooses a point
and a feature to divide the data space. Therefore, its F1 scores
are also low.

IV. CONCLUSION

The best result was showed by LNND (0.338). On first
glance, this score is low, which leads to assumption that in
this moment unsupervised ML methods can’t be applied for
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TABLE I
AVERAGED VALUE OF F1 SCORE WITH CONFIDENCE INTERVALS OF TRAINED MODELS WITH OPTIMAL HYPERPARAMETERS (BOLD TEXT INDICATES THE
BEST RESULTS OF THE MODELS).

Feature Algorithm
OCSVM kNN LNND LOF IF
3 Hz Raw 0.305 £ 0.057 0.316 £+ 0.055 0.281 = 0.055 0.297 £ 0.055  0.304 &+ 0.057
30 Hz Raw | 0.307 = 0.060 0312 £ 0.060 0.331 = 0.056  0.330 £ 0.054  0.271 £ 0.073
3 Hzmean | 0.255 + 0.071 0.282 £ 0.074  0.116 + 0.040  0.278 £ 0.073  0.282 + 0.074
30 Hz mean | 0.245 £ 0.071  0.270 + 0.073  0.135 £ 0.046  0.254 &+ 0.053  0.270 =+ 0.073
3 HzPCA | 0273 £0.072 0.300 £ 0.075 0.250 = 0.071  0.292 £ 0.075 0.276 & 0.073
30 Hz PCA | 0.300 £ 0.058 0313 + 0.077 0.338 = 0.077  0.331 &+ 0.080 0.304 £ 0.061
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Fig. 1. Distribution of F1 score values in the group of models with the best average result.

raw epileptic EEG data labeling. However, presence of both
high and low F1 scores in group (see Figure 1) allows to
conclude, that there can be hidden differences between patients
in the group. We assume that the results of ML labeling can be
improved by finding a feature (or a combination of features)
that would better characterize an epileptic seizure, separating
it from normal data and artifacts.

Additionally, even the proposed approach can be imple-
mented in clinical practice. F1 score is low in average, which
limits possibility for fully automated EEG labeling. However,
the fact that it works well for some patients, can justify
its application in Clinical Decision Support System (CDSS).
In CDSS ML algorithm performs data prelabeling, then this
prelabeled data is cross-checked by the human expert, who
makes the final decision. While such system still requires
participation of the expert, it can be used to greatly (up to
95%) reduce the expert’s workload [6].
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