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A B S T R A C T

Neuro- and biomorphic approaches in the design of intelligent robotic systems and, more specifically, various
technical applications have attracted much attention from researchers and engineers. Biomorphic robotics
implies that a machine should be able to reproduce movement and control it the same way animals do in a
real-world environment. Fish-like swimming robots seem to be the simplest candidates to reproduce biological
mechanics of movement in aquatic medium adhering to the principles of its control and navigation. At the
heart of the fish movement control system is its central pattern generator (CPG) located in the spinal cord. This
CPG creates a robust rhythmic signal that activates muscles inducing movement in space, i.e. locomotion. The
fish actuator system involves body muscles and fins and looks quite simple in comparison with land-walking
animals. Hence, it has become the center of attention for many modeling and engineering studies that we
review in this article. Many fish-like robots have been developed since rather simple CPG controllers can
induce robot swimming. However, existing robotic solutions are still far from natural prototypes in terms of
speed performance, power efficiency, and maneuverability. Something seems to be missing in understanding
the actuator control principles and hence appropriate CPG design. A tuna fish’s cruising speed of more than
a hundred kilometers per hour, and acceleration of dozens of g in pike attacking its prey remain unreachable
digits for existing robotic solutions. Along with the development of bionic muscle-like actuators, state-of-art
research in this field focuses on finding possible ways of CPG integration with sensorial systems and higher-
level brain controllers. Needless to say, a close study of biological fish swimming in terms of its biomechanics
and control still raises fundamental questions about how fishes are capable of moving so efficiently. Inertial and
dense aquatic medium requires CPG to be highly integrated with sensorial receptor systems. Fish swimming
is finely optimized relative to energy loss into fluid turbulence. How this control is organized remains a
question. We also review some concepts on how a higher-level of movement control can be incorporated
into the intelligent CPG design.
1. Introduction

Aquatic and amphibious robots demand substantial engineering to
be able to operate in water. Biologically motivated underwater vehicle
design and control look especially promising for search and rescue
applications in real-world environments [1]. Many features of robotic
platforms developed to emulate swimming locomotion were inspired by
biological swimmers, particularly by their locomotor system. Advanced
technologies and the growing integration of biology and engineering
are revealing new basic principles of agile, high-performance, and
energy-efficient animal swimming. There are several key impressive
peculiarities of fish swimming that are extremely difficult to achieve
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in man-made robots. One of them is the fish’s ability to quickly and
flexibly adapt locomotion to new dynamic environments. Another im-
pressive feature is the energy efficiency of high-performance scombrid
fishes like tuna. When escaping from predators or catching prey they
can operate at high frequency and speed with low energy costs. Al-
though there have been several underwater robots developed that could
replicate fish locomotion, only recently have researchers proposed bio-
inspired robotic designs capable of closely matching the performance
of high-speed tuna-like swimmers [2]. Another remarkable ability of
fish is the fast-acting continuous and robust coordination of multiple
degrees of freedom using multiple redundant actuators (joints, muscles)
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Fig. 1. The fish locomotor system is represented by the spinal CPGs producing the basic rhythmic patterns, and the higher-level centers (the motor cortex, cerebellum, and basal
ganglia) regulating these patterns according to real-world environmental conditions. The peripheral nervous system (e.g. sensory neurons) provides sensory feedback and modulates
the CPGs pattern generation. Muscle activations are controlled by CPGs signals.
carried out by the biological locomotor control system. Nonetheless, the
mechanisms underlying these features of biological locomotion are still
poorly understood.

Fish movements are determined by a complex interaction of three
body systems: the central nervous system (the brain and the spinal
cord), the peripheral nervous system (nerves projecting to muscles
and sensory neurons), and the musculoskeletal system. A schematic
representation of the fish locomotion system is depicted in Fig. 1.

It is now generally accepted that the functional units in the central
nervous system responsible for solving challenging tasks of generating
agile locomotion patterns and processing multi-modal sensory infor-
mation are central pattern generators (CPGs). CPGs are neural circuits
capable of generating coordinated rhythmic activity without sensory
feedback and descending drive, which were found both in inverte-
brates [3] and vertebrates, including mammals [4,5]. A general view is
that CPGs provide the basic locomotion patterns by producing rhythm
and coordination and that sensory feedback modulates these patterns
to fit the environment. In vertebrates, CPGs are located mostly in the
spinal cord. These generators receive stimulation from the higher-level
centers (brainstem and other areas of the brain such as the motor
cortex, cerebellum, and basal ganglia) which are responsible for modu-
lating CPGs patterns to match the environment. [6]. The exact topology
and functionality leading to the ability of these neural networks to
produce rhythmic patterns have yet to be fully clarified. The develop-
ment of CPG-based robot locomotion control is not only interesting for
understanding animal locomotion systems, but also for robotics because
this kind of biologically relevant controller can provide agile, robust,
and energy-efficient control while maneuvering in complex environ-
ments [7,8]. Therefore, CPGs models for robot locomotion control have
been extensively analyzed and validated.

Depending on the research subject, the mathematical models of
CPGs have been designed at different levels of abstraction [9]. The first
category lacks biological plausibility and models CPGs as systems of
coupled nonlinear oscillators. In this case, one oscillator simulates the
activity of a whole oscillatory neural center at an abstract level. The
aim of these models is to investigate how connectivity between oscil-
lators and differences in intrinsic frequencies influence the collective
dynamics and help achieve synchronization (rhythmic pattern gener-
ation) in the oscillatory center population. Due to simple dynamics,
this phenomenological approach makes it possible to study the system
analytically. The second category of CPGs models uses spiking neural
networks. They can be constructed based on the simplified models
of neuronal membrane potential dynamics such as integrate-and-fire
neurons or detailed biophysical models such as Hodgkin–Huxley type
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of neuron models. The purpose of these models is to investigate the
mechanisms of rhythmogenesis and the influence of the network prop-
erties on oscillatory activity. The advantage of this approach, apart
from biological relevance which makes its contribution to neuroscience
very significant, is that SNN-based CPGs can be implemented on neu-
romorphic hardware leading to more power efficiency. Recently, more
and more CPG models have been integrated with a biomechanical
simulation of a body. Such neuromechanical models focus on the
CPG modulation by the sensory feedback via interaction with the
environment [10].

This review paper focuses on the CPG-based control of robotic
swimming locomotion. A search was conducted using the IEEE Xplore
and Scopus databases in order to identify papers that include terms:
‘‘fish locomotion’’, ‘‘central pattern generator’’, ‘‘swimming robotics’’,
‘‘control system’’, ‘‘spiking neural network’’ etc. We analyze recent
studies (since 2015) dedicated to the design and analysis of the model
of CPGs and apply it to swimming robots. The paper is structured as
follows. We will start with the review of the CPG models for swim-
ming locomotion of the lamprey, a primitive eel-like fish (Section 2).
Lampreys use an anguilliform swimming gait in which a traveling
wave of body undulation is propagated from head to tail. Due to its
relative simplicity, the lamprey is the most modeled fish which has
been extensively modeled as a robot. One of the most exciting features
of undulatory swimmers such as eel or lamprey is the high robustness
of swimming locomotion pattern generation. In contrast to the over
vertebrates, a major disruption of the lamprey’s CPG does not lead to
the failure of the locomotor behaviors [11,12]. The CPG-based control
of other types of swimming has been studied to a lesser extent. We
will focus on them in Section 3. We will review the CPGs models
of high-performance swimmers such as tuna and related scombrid
fishes, which utilize carangiform swimming gaits (which use mainly
the tail for propulsion). These fishes often operate at high frequencies
and speed while maintaining reasonable energetic costs. In Section 4,
we will review the model of the salamander CPGs. The salamander
uses an anguilliform gait for swimming like lamprey and standing
waves of body undulations for walking. The salamander, an amphibian
capable of swimming and walking, offers an interesting link between
research on the lamprey and research on tetrapods. The proposed CPG-
based models of the salamander locomotion circuit helped explain
the experimentally observed effect of the automatic switch from low-
frequency walking to high-frequency swimming by modulating the
electrical stimulation of a particular region in the brainstem of the
salamander. Finally, Section 6 will discuss a list of open questions in
the related field.
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The review is not meant to be exhaustive, and interesting related
reviews exist on the modeling of animal locomotor systems [9,13,14].
However, our review focuses on the CPGs with the simplest types of
locomotion (in the aquatic environment, not on land), which are cur-
rently becoming increasingly popular, being used in neurocontrol tasks
based on realistic biological circuits. Due to this, robotic applications
are currently evolving at an accelerated pace.

2. Lamprey

Lampreys are one of the most primitive fish. Lampreys use an
anguilliform swimming gait that implies a traveling wave of body un-
dulation propagating from head to tail (Fig. 2A-C). Eels and terrestrial
snakes also use anguilliform swimming. Lamprey’s locomotion has been
extensively studied due to the simplicity of their spinal cord, movement
repertoire, and body structure. Lamprey’s spinal cords consist of about
100 segments, each of which contains an oscillatory neural network
of approximately 1200 connected neurons (Fig. 2D-E). It was shown
that electrical or chemical stimulation of the lamprey’s spinal cord
isolated from its body (and even several segments of the spinal cord)
can trigger rhythmic patterns called fictive locomotion, which are the
same as intact locomotion [15]. The basic organization of synaptic
connections between lamprey spinal cord neurons has been studied in
detail [16–18]. Most researchers distinguish four main types of neurons
involved in rhythm generation: excitatory interneurons (EIN), lateral
and contralateral inhibitory neurons (LIN and CIN, respectively), and
motor neurons (MN) [19–23]. EINs interact with EINs from neighboring
segments. EINs project excitatory connections to all other neurons (LIN,
CIN, and MN) located on the same side of the spinal cord segment.
CINs provide inhibition signals to the neurons on the contralateral side,
while LINs are coupled inhibitory with CINs from the same segment
side. The motor neurons MN transmit output signals directly to the
muscles. In each of the spinal cord segments, alternating peak activity
on the left and right sides has a frequency in the range from 0.1 Hz to
8–10 Hz. Each side of a segment can generate a burst of activity inde-
pendent of the other side. Due to such dynamics, lamprey movements
in water are very energy-efficient and simple.

The rhythmic patterns produced by CPGs can be modulated by
the simple descending control signals from the high-level center of
the central nervous system. For instance, electrical stimulations of the
mesencephalic locomotor region (MLR), which is located at the junction
between the midbrain and hindbrain and is the locomotor center of
the brain [24], induce well-coordinated and controlled swimming. The
frequency of movements linearly depends on the stimulation inten-
sity [25]. Reticulospinal neurons represent the MLR critical relay for
the initiation and control of locomotion. They are the connection of
MLR with spinal neurons [26,27].

Because of its relative simplicity, lamprey locomotion has been
studied in some detail [9,28]. At the moment, many mathematical
models implement lamprey CPG with different biological plausibility,
and work in this direction continues. When developing lamprey CPG
models, most recent studies have focused on the applicability of the
resulting models to robots. Therefore, the most common CPG models
consist either of pairs of phase oscillators or small neuron populations,
where each population of connected neurons acts as a phase generator.
The LIF neuron model is the most commonly used in lamprey CPG
modeling as it is the most computationally efficient of the spiking
neuron models. Computational efficiency is a necessary condition for
the use of such systems in robotics and the implementation of robot
locomotion in real-time.

Next, we will review the latest work on the lamprey CPG modeling.
The main goal of the work [20] was to study the possibility of

implementing a lamprey CPG model on electronic circuits that mimic
the properties of real neurons and have realistic synapse dynamics. The
authors of the work successfully implemented a CPG network using
3

neuromorphic electronic circuits consisting of low-power analog silicon
neurons that can be directly connected to the executive mechanisms of
a robotic lamprey. The neurons and synapses on the chip were imple-
mented as analog subthreshold current circuits capable of reproducing
a wide range of biologically relevant dynamics. In the work [20], the
elementary unit of the CPG was the LIF neuron. The CPG consisted
of 256 neurons connected in a network of 128,000 plastic synaptic
connections of two types: excitatory and inhibitory.

The study [29] is devoted to the role of cyclic modulation of
reticulospinal neurons. The authors showed that the inclusion of phase
modulation of the reticulospinal neurons of the CPG contributes to
solving the problem of synchronization between the presentation of
the control command and the lamprey movement phase. The control
command signal will be directed to the reticulospinal level, so it
will automatically promote reticulospinal activity in the corresponding
phase. To confirm their hypothesis, the authors implemented a detailed
large-scale computational model of MLR and CPG. The model used
19 600 neurons (4000 in the MLR and 15 600 in the CPG) and 646 800
synaptic connections. Simultaneous stimulation of both left (TL) and
right (TR) tectal neurons in the MLR region causes forward swimming.
Stimulation of either TL or TR causes a turn. The CPG consisted of 100
identical and symmetrical segments on the left and right sides. Each
segment consisted of 40 motor neurons, 60 excitatory and 40 inhibitory
interneurons, and 16 reticulospinal neurons. A specialized biologically
plausible lamprey CPG neuron model was used as a neuron model [30].
Each neuron contained 16 compartments: the soma, the initial axon
segment, and 2 primary, 4 secondary, and 8 tertiary dendrites. All
network simulations were performed on a CRAY XE6 parallel super-
computer. To ensure that the simulated neural network could control
body movement, the authors applied their CPG model to a mechanical
model of lamprey swimming. According to the results obtained, tectal
neurons should have minimal frequency adaptive properties, in contrast
to reticulospinal neurons.

The key feature of the work [31] is that it involves detection of
the location and size of objects, preprocessing of the received infor-
mation using a neural network, and transmission of the locomotion
commands to the CPG model. The CPG model used in this work was
based on the model proposed in [32]. Each element of the CPG is
modeled as a pair of neural networks. The two networks are connected
through long-range ipsilateral excitatory projections and contralateral
inhibitory projections. Network connection of elements is carried out
according to the work [33]. In total, this CPG model uses 1600 integra-
tion and activation neurons with adaptation to the spike frequency. Ten
pairs of spiking-free special units integrate local interneuronal activity
and provide filtered motor activity. The muscular-mechanical model of
the lamprey is built in accordance with the simulation results obtained
in the earlier work of the authors [22].

Angelidis and colleagues in their work [34] presented the lamprey
CPG, in which each segment consists of a population of LIF neurons.
The dynamics of each segment corresponds to the dynamics of an
abstract Hopf-type oscillator. To implement the CPG model, the au-
thors used the ‘‘Nengo’’ platform [35], which has built-in methods
for neural network architecture generation to approximate differential
equations (in this case, the Hopf-type oscillator dynamics equations).
Communication between neighboring CPGs segments is executed by
the intermediate neuronal populations. Using the neural engineering
framework, the Hopf oscillator was implemented as a single-layer neu-
ral network with a feed-forward connectivity topology. The connections
weights within the network were calculated by fitting output and input
signals.

The authors analyzed the resulting swimming gaits under various
simulation scenarios. In the scenario of unperturbed swimming, the
authors investigated how the change in the number of neurons in
CPGs segments and the presence of the CPG modulation by higher-level
centers influences the swimming gait. The effect of the high-level mod-
ulation was also studied under the scenario with a water speed barrier.

To do this, the authors applied the developed CPG model to control
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Fig. 2. A – Lamprey; B - Lamprey robot; C - Lamprey locomotion; D - Common scheme of the lamprey CPG model. The CPG is a double chain of connected 2N oscillators. Each
oscillator is connected to neighboring oscillators on the same lateral (‘‘L’’ = left or ‘‘R’’ = right) side. Within one segment, numbered from head to tail, the left and right oscillators
are also coupled together; E - CPG segment. Each segment contains 2 symmetrical oscillatory neural networks consisting of approximately 600 connected neurons (excitatory
interneurons (EIN), lateral and contralateral inhibitory neurons (LIN and CIN, respectively), and motor neurons (MN). EINs interact with EINs from neighboring segments. EINs
project excitatory connections to all other neurons (LIN, CIN, and MN) located on the same side of the spinal cord segment. CINs provide inhibition signals to the neurons on the
contralateral side, while LINs are coupled inhibitory with CINs from the same segment side. The motor neurons MN transmit output signals directly to the muscles.
the virtual lamprey robot within a physical simulation environment.
3D lamprey model consists of nine body parts, similar to the amphibot
from [36]. These parts are interconnected by eight joints that have one
degree of freedom: rotation around a vertical axis. To create swim-
ming patterns, the angular positions of these joints oscillate with the
amplitudes, frequencies, and phases prescribed by the CPG model. The
neurorobotics platform (NRP) [37] was used to perform data exchange
between the CPG and the virtual robot. To overcome the computational
efficiency limitations of traditional processors, the authors tested their
CPG model on the SpiNNaker-3 and Loihi neuromorphic boards.

According to the results, the proposed CPG model demonstrated
an acceptable calculation speed for real-time implementation and the
ability to generate traveling waves from random initial conditions even
with a small number of neurons in the CPG segments (but more neurons
provide smoother gait). The model demonstrated significant stability:
an external perturbation of one segment leads to temporary disruption
of the rhythmic activity of neighboring segments. When stimulation
stops, the rhythmic dynamics in CPG quickly stabilizes. Application of
the asymmetric input signals to the left and right CPG sides causes the
formation of different traveling waves on different CPG sides, which, in
turn, leads to a locomotion direction change. While testing the model
in the presence of a speed barrier, the authors demonstrated 2 scenarios
of lamprey virtual robot behavior. The robot can overcome a barrier or
turn to the side. Barrier crossing is observed when the CPG dynamics
is modulated by the tonic drive signal from the high-level center. This
high-level signal is adjusted by the error correction mechanism that
adapts the robot’s motion to follow a certain trajectory. A comparison
of SpiNNaker-3 and Loihi hardware with a conventional CPU demon-
strated that neuromorphic hardware has lower power consumption
compared to traditional processor architectures when simulating spik-
ing neural networks. The CPG model proposed in [34], on the one hand,
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requires a large number of neurons per CPG segment, and hence is
less energy-efficient, but, on the other hand, provides a wide variety
of behavior scenarios and greater gait smoothness.

In another study [38], the authors developed hardware-based neural
networks (HNNs), based on discrete circuits that replicate the structure
and function of lamprey CPGs. The CPG is implemented as a double
symmetrical chain consisting of generators. Two head generators are
in self-excitation mode. CPG segments are connected to their neighbors
by models of excitatory and inhibitory synapses. They are circuits that
perform the spatiotemporal sum of the output signals from the CPG
segment. The segments of the lateral side are connected by excitatory
(from head to tail) and inhibitory connections (from tail to head)
with time delays implemented using integrated circuits. Tail-to-head
connections are used to stabilize the delay period. Moreover, each
segment of the CPG inhibits the contralateral segment through synaptic
connections, the output of which decreases after a predefined time.
According to the results of modeling carried out by the authors, the
HNN models generate oscillatory bursts corresponding to two lamprey
neural functions: alternate generation of oscillatory bursts by left and
right segments; propagation of an oscillatory burst from head to tail.

While it was repeatedly confirmed that sensory feedback is not
needed for rhythmic locomotion generation in lamprey, it plays a
crucial role in the modulation of periodic patterns in response to
the environment. One of the basic findings is that the application of
a periodic external force to the lamprey’s tail induces synchronized
CPG activity in a large frequency range [39–41]. This is implemented
using stretch receptors in the lamprey’s spinal cord which provided the
traveling of a neural wave correlated with the mechanical oscillation.
Lamprey CPGs received sensory feedback from edge cells [42,43]. The
edge cells are mechanoreceptors that sense stretch along the body. In

doing so, they send signals that excite the ipsilateral side and suppress
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the contralateral side of the body (relative to the position of the edge
cell). Moreover, experimental results [44] showed that the edge cells
also respond not only to the stretch itself but also to the rate of its
change.

In the work [45], the authors presented a close-loop lamprey CPG
model with sensory feedback. The distributed CPG is modeled as a
double chain of sinusoidally coupled phase generators. The lamprey
swimming was simulated in a viscous incompressible fluid using a full
Navier–Stokes model. In the proposed model, the biologically relevant
proprioceptive feedback uses the parameters of the body curvature and
sends appropriate inputs to the CPG oscillators. The authors separately
considered the effects of two different forms of sensory feedback on
swimming speed and energy consumption. The first type of feedback
that uses only the direction of body curvature did not affect the fre-
quency of CPG activity but did affect the duration of rhythmic activity.
The feedback that uses the magnitude of body curvature induces an
increase in the beat frequency/swimming speed and a decrease in the
energy cost of the lamprey. It was demonstrated that the incorporation
of two types of feedback to the CPG model changes the kinematics
and energy of swimming in a complex way. Interestingly, earlier this
scientific team used neuromechanical modeling of lamprey swimming
to demonstrate that even in the absence of feedback in the proposed
CPG model the interaction between the body and the fluid induces
a phase delay between the CPG segments activities, in which muscle
activation occurred after the body curvature [46].

Biological objects often become the inspiration for robot design. At
the same time, robotic systems developed on the basis of experimental
data are an excellent tool for testing hypotheses and computational
models of real living systems. One of the critical aspects that must be
considered when designing robots is the computational speed needed
to move the robot and execute commands in real time.

In their work [47], the authors proposed the implementation of
a lamprey robot consisting of three components: a sensory system, a
CPG model, and a neuromuscular system. The main feature of this
study is that the robot is equipped with various sensory devices. These
include (i) a short baseline sonar array (SBA), which allows homing
to an acoustic beacon; (ii) compass; (iii) a two-axis accelerometer that
provides tilt and acceleration information. The resulting sensory data
are transmitted to command neurons from the high-level center that
modulates the CPG dynamics. The topology of the CPG network model
was based on the ideas proposed in [48]. The dynamics of a single
neuron was described by a simple model proposed by Rulkov [49]. The
CPG network generates output pulse signals that control the current
applied to the robot actuators. The robot developed by the authors
demonstrates a wide range of skills and abilities. Propagation of the
wave from head to tail ensures the forward movement of the robot.
The posterior wave path between the CPG segments provides backward
swimming. Modulating high-level center commands provides speed and
turn control. The command network uses the information received from
various sensors for homing, primary orientation, and also for avoiding
obstacles by the robot. The presence of the SBA allows the robot to aim
at a sonar beacon, and the inclinometers activate the bend segment,
allowing the lamprey robot to float and dive.

Youssef et al. [31] have developed the robotic lamprey ‘‘Envirobot’’
equipped with two different types of cameras: frame and event. The
information received from the cameras was used as a neural network
stimulation pattern. After the information had been processed by the
neural network, action commands were transmitted to the CPG, which
led to purposeful lamprey robot swimming. The researchers also com-
pared the performance of the computational model using two different
types of cameras. It was shown that using the event-based cameras
improved the accuracy of swimming trajectories and led to a significant
increase in the processing speed of visual inputs by the network.

Most recently at the ‘‘Artificial Life’’ conference C. Stefanini and D.
Romano presented a model of the ‘‘Lampetra’’ robot [50]. ‘‘Lampetra’’
5

demonstrated smoothness of movements due to the muscular activation
system based on the use of direct interaction of magnets and a bio-
logically relevant CPG model. This robotic system allowed the authors
to test the CPG hypotheses and explore the purposeful locomotion of
the robot using visual input from its binocular vision system, which
was processing a streaming video. The robot was able to track objects
and avoid obstacles. The authors propose using their robot model for
interacting with abiotic and biotic components of aquatic ecosystems
and for interfacing with the central nervous system of real fish.

3. Fish

Fish are excellent swimmers. They are capable of covering consid-
erable distances, developing high cruising speed, and demonstrating
significant maneuvering skills. The key factor that provides these fea-
tures is the mechanism of their movement. The main driving force is the
oscillations of the body and tail. Fins are used to fine-tune the direction
vector of a fish movement. At the same time, the control system in
the form of a CPG is generally similar to that described in lampreys,
however, depending on the species and order, it may contain a different
number of segments, including those responsible for fins. It should be
mentioned that the system of connections between CPG segments may
also differ. However, regardless of the architecture of the CPG, cyclic
activity should manifest itself in the form of traveling waves. Examples
of CPG architectures are shown in Fig. 3.

Depending on the type of wave, there is a generally accepted clas-
sification of the types of fish movement (Fig. 4). The subcarangiform
type of movement is characterized by the wave propagation from the
head to the tail with a smooth, slight increase in amplitude. Typical
representatives of this group are salmon and cod. With the carangiform
type of movement (Fig. 5D-F), the change in the wave amplitude is
more pronounced than with the subcarangiform type. This variant of
locomotion is typical for mackerel and barracuda. Tuna and swordfish
have a thunniform type of locomotion (Fig. 5A-C), in which the head
remains at rest during movement, and the wave starts approximately
from the middle of the body. In this case, all moving segments deviate
in one direction relative to the axis of the body.

Separately, the scientific community singles out the ostraciform type
of locomotion, characteristic of the cofferfish and boxfish. In this case,
during locomotion, the fish uses only the caudal fin, which makes
very fast oscillatory movements, creating thrust. At the same time, its
movement is much slower in comparison with other fish and does not
provide high maneuverability. Despite this, the simplicity of describing
the locomotion of these fish makes them a very convenient object for
modeling.

Also, the speed of movement depends on the structural features
of the body. It is known that fast swimmers (for example, tuna),
reaching speeds of over 100 km/h, have a shortened torpedo-shaped
body with a well-differentiated tail fin. This body shape gives the fish
minimal hydrodynamic resistance, which is essential at high speeds.
Particular emphasis should be placed on the role of the caudal fin
during thunniform movement. In addition, the tail fin provides the fish
with great maneuverability at high speed. Thus, with the help of the
caudal fin, tuna can easily make a 90◦ turn in one movement of the
tail.

Despite differences in swimming types, common criteria can be
identified for robots exhibiting fish-like locomotion: (i) vortices are
shed off the tail fin so that a backward Karman wake is formed; (ii) tail
beat frequency correlates linearly with swimming speed; and (iii) the
CPG must form a cyclic signal that ensures the coordinated interaction
of all segments of the robot, regardless of the type of architecture and
the wiring diagram inside it.

Most of the authors of the works described below followed these
features, however, depending on the purpose of modeling, they con-
centrated on specific aspects. Some authors sought to achieve a more
accurate correspondence of the robot’s swimming to real fish by chang-

ing the architecture of the CPG. Others have modified the output signal
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Fig. 3. A - Example of the scheme of the boxfish CPG model (ostraciform type of locomotion) [51]; B - Example of the CPG model of a fish with a carangiform type of
locomotion [52]. The CPG consists of a body CPG – a double chain of 2N-1 connected oscillators – and a pectoral CPG – 4 oscillators for driving the fin motors.
Fig. 4. Classification of the types of movement of fish.
of the CPG to study the processes of switching modes of locomotion. It
is impossible not to mention the research, the main purpose of which
was to improve the speed characteristics of model robots.

The paper [53] is one of the main works in the field of fish CPG,
which was subsequently cited by many other researchers. In their
work, the authors proposed a bionic neural network for carangiform
swimming locomotion of the fish robot based on the two most popular
Wilson–Cowan [54] and Matsuoka [55] oscillator models. The advan-
tage of the Zhang oscillator model [53] is the possibility of modulating
each oscillator parameter during its operation. The designed neural
network consists of one high-level controller, which regulates body
swing angular frequency, amplitude and bias angle for turning, and
CPG. It should be noted that in this CPG model one oscillator controls
both the ‘‘contraction’’ and ‘‘relaxation’’ of the muscles. Thus, the
CPG is a chain of nonlinear neural oscillators coupled by both back-
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and front-directed connections. The proposed CPG model showed high
performance in controlling the fish-robot. The authors demonstrated
the start and stop of the movement, move forward and backward, turn
right and turn left.

An important aspect of CPG development is the inclusion of feed-
back in the model. This ensures that locomotor swimming models
adapt to dynamic and unexpected environmental conditions. CPG with
closed-loop sensory feedback exhibit robust, stable, and adaptable mo-
tor outputs depending on external stimulus from sensory neurons. For
example, in [56], to realize the ostraciiform swimming modes, Lachat
and colleagues presented a three-segment CPG with feedback from light
and water sensors. The CPG model was implemented as a system of
three coupled nonlinear amplitude-controlled phase oscillators (one for
each fin and one for the tail) and had several advantages. Firstly,
the system dynamics demonstrates limited cycle behavior, i.e. after



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 165 (2022) 112864Y.A. Tsybina et al.
Fig. 5. A-Tuna; B- Tuna robot; C - Thunniform type of locomotion; D-Pike; E – Pike robot; F - Carangiform type of locomotion.
any system perturbation, the oscillations rapidly return to the steady-
state oscillations. The second feature is that any abrupt or permanent
variation of the model control parameters (frequency, amplitude, and
phase shift) induced only smooth modulation of the oscillations. The
fish-robot Boxybot developed by the authors [56] was based on the CPG
model presented above. This robot is fully autonomous and can perform
and switch between different locomotor behaviors such as swimming
forward, swimming backward, turning, rolling, moving up/down, and
crawling. These behaviors were triggered and modulated by sensory
input coming from light and water sensors and could be realized by
modulating the CPG control parameters for the three fins. Also, the
authors implemented a simple phototaxis by introducing a proportional
dependence of the robot locomotion speed on the light intensity. The
speed of locomotion was regulated by changing the control parameters.
It should be noted that the speed limit of the robot was due to the
maximum motor torque.

In 2008 [57], the authors of this model published an extended
version of the paper [56] with a more detailed description of the
control architecture and new results on crawling. The developed robot
demonstrated moving in a 3D space with various types of maneuvers.
It could come out of the water using a crawling gait, avoid obstacles
by swimming backward for a few seconds, lock on to bright light, and
slowly follow it. Additionally, the fish-robot Boxybot demonstrated the
ability to work continuously for a long time.

In contrast to previous works, Wang et al. [58] used linear oscilla-
tors instead of nonlinear ones and designed a much simpler CPG model
with similar performance. The proposed model includes three coupled
linear oscillators which exhibited periodic orbits. In addition to the
CPG model, a locomotion control system also contains a transition layer
composed of a direction controller and a speed controller and is used
to transform control commands into the CPG inputs. The generation of
different locomotion behaviors was performed by changing the input
7

control parameters incoming to the transition layer. Moreover, the au-
thors applied the particle swarm optimization (PSO) method to reduce
the number of control parameters and found that just two parameters
are enough to implement the locomotion control model: frequency
and phase shift. Developed fish-like robot demonstrated the ability to
perform forward movement and smooth rotation. Transitions between
different oscillating forms were also smooth, and the implementation
architecture had a low computational cost.

In 2016, the authors of this model published the paper [59], where
they added several components to control multiple robotic fish: image
capturing subsystem, information processing subsystem, and communi-
cation subsystem. To organize the interaction of several moving objects,
the authors constructed a visual system that received data from each
robot in real time After processing an image received from the camera,
the computer sent control commands wirelessly to fish-robots and
received feedback from robots.

Another work worth mentioning is [60], in which the CPG is mod-
eled as a neural oscillator that includes extensor and flexor neurons
connected by mutual inhibitory connections. Each neuron receives
a tonic input that triggers neuronal oscillations, input signals from
other neurons, and sensory feedback signals. The model equations
are optimized so that the oscillator operates in the limit cycle mode.
Each joint of the designed fish-robot is assigned its individual neural
oscillator. In this case, the output signal of each oscillator is used as
the target joint angle. Thus, in this CPG model, not only the fins and
tail are involved in the movement, but also the joints of the body.
Besides, the authors proposed an approach where different types of
fish-like swimming (anguilliform, carangiform, and ostraciiform) can
be modeled by pre-setting different connection weights between neural
oscillators. The developed robot demonstrated the ability to swim both
with and without fins, move forward and backward, make a sharp turn,
dive, rise, and brake.



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 165 (2022) 112864Y.A. Tsybina et al.
Based on [58] and [60], Wang et al. in 2013 [51] proposed the
CPG model (Fig. 3A) that also used only two parameters to simulate
the ostraciiform swimming in the 3D space. One parameter determines
the swimming mode (such as forward swimming and turning) and the
second parameter defines swimming speed and gait transition. The
CPG model consists of three functional layers: input saturation function
which receives command parameters, coupled neural oscillators, and
output transition function which translates the neural oscillator output
to the motor driving signal. The authors applied their CPG model to the
boxfish robot with two pectoral fins and one caudal fin equipped with
a vision sensor — camera. The sensory system allows the robot to track
the object and optimize the fin operation. This result is consistent with
Lachat’s [56] and Crespi’s [57] phototaxis simulations. According to
the experiments, the developed robot was able to smoothly and rapidly
transition between different swimming modes and switch between
pectoral and caudal gaits. Moreover, it showed great performance in
flexibility, maneuverability, and the ability to modulate swimming with
the required speed.

Another research area concerns the development of a new type of
robot — amphibious robots, which can both swim in the water and
move on land. For example, Ding et al. [61] presented a CPG-based
model for swimming locomotion control of a multimode biomimetic
amphibious robot based on Crespi’s robot [36,62]. The CPG network
consisted of the pectoral CPG and the tail CPG. The pectoral fin on each
side had its own nonlinear neural oscillator with controlled amplitude
in terms of the Kuramoto model [63]. The tail part of CPG included four
segments, each of which consisted of two mutually inhibited oscillators
responsible for flexion and extension. Amplitude and frequency indi-
cate the activity of a single oscillator while the connections between
oscillators are determined by the values of coupling weights and phase
shifts. The segment output signal is obtained by the amplitude sum
of a pair of oscillators. The presence in the model of the saturation
function between the CPG joints makes it possible to control the speed
of fish movement by changing the number of CPG segments involved
in the oscillatory process. Using this model, the authors successfully
demonstrated the robot’s ability to perform and switch between differ-
ent swimming modes, such as moving forward and backward, turning
and pitching, with modulation of speed, direction, and gait.

The paper [52] is a continuation of Ding’s research. To provide
autonomous transitions between different types of locomotion, the re-
searchers upgraded their model by including sensory feedback. Sensory
feedback was provided to the robot’s CPG (Fig. 3B) by liquid-level
sensors. In particular, two liquid-level sensors were used to determine
the presence/absence of water (to determine whether the robot was on
land or in the water). Information about the presence/absence of water
was included in the CPG model to explicitly modulate the coupling
phase shifts of the oscillators to generate reactive behavior adaptable to
changing environments. Moreover, by adding to the robotic fish a pair
of wheel-propeller fins, researchers managed to significantly expand
the movement modes of the designed robot. The amphibious robot was
able to swim in all dimensions, turn, spin, and also turn on the spot.
Of particular interest is the possibility of modeling vertical swimming
common in dolphins and the ability of the system to independently
switch between different types of locomotion.

Unlike the previous CPG models consisting of only coupled os-
cillators, in [64] the authors presented a new form of CPG, which
included coupled oscillators, an artificial neural network (ANN), and
an output amplitude modulator. The coupled oscillators consisted of
several single Andronov–Hopf [65] oscillators. The proposed oscillator
model remained in the limit cycle state when the desired swimming
pattern is reached, and the behavior of the entire system depended
on the impact on a single oscillator. Coupled oscillators were used to
generate input signals fed to the ANN. The ANN was trained by target
values corresponding to the swimming patterns of a real fish, received
excitation signals from oscillators, and then output desired locomotion
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patterns. The last component of the CPG was an outer amplitude
modulator, which changed the size of the amplitudes of the ANN
output signals according to task specifications. The authors focused on
anguilliform locomotion and developed fish-robot that performs both
forward and backward movements.

The article [66] also uses Hopf generators [65] as a CPG segment.
The authors proposed a robotic thunniform swimmer model, the CPG
of which consisted of two coupled (downlink) oscillators. In the model
proposed by the authors, the phase shift between the oscillators is
controlled by an explicit parameter. The phase shift is fixed and equals
𝜋/2. This approach makes it easier to achieve synchronization between
the oscillators by reducing the influence of the forcing oscillator on
the amplitude of the forced oscillator. The CPG generates a swimming
gait and transmits signals to the servomotors in real-time mode. When
swimming forward, the caudal fin performs harmonic oscillations along
a sinusoid. Harmonic vibrations are a combination of translational and
rotational motion. The correct phase shift between the translational and
rotational motion of the tail fin is critical for effective thrust generation.
Therefore, the authors developed a phase adjustment mechanism to
compensate for the phase error between servomotors. The phase shift
is evaluated in real time by feedback, and the value of the parameter
that controls the phase difference in the CPG controller is dynamically
corrected. The model of a robotic fish controlled by this CPG model
can reach speeds up to 2 m/s. At this high speed, the flapping tail fin
also creates lateral forces that cause roll moments, which can cause the
robot to roll over. To stabilize the robot, the authors equipped their
model with a gyroscope, an accelerometer, and a magnetometer. The
data received from these sensors were used to control the tilt of a pair
of pectoral fins, which ensured the stabilization of the robot fish.

Wang and his colleagues were focused on improving the efficiency
and increasing the speed of the fish locomotion modeled by CPG [67].
They used the Hopf oscillators [65] in the limit cycle mode as the CPG
unit. The CPG model is implemented as a chain of 6 weakly coupled
oscillators. Due to mutual inhibition and neighboring coupling between
the CPG blocks, different parts of the robot-fish can be coordinated as
a whole. The authors applied the CPG model to a pike robot (carangi-
form type of locomotion) equipped with six servomotors (two for the
pectoral fins, 3 for the flexible rear body, and 1 for the caudal fin).
The movement of each motor was carried out on the basis of a signal
coming from the segment of the CPG corresponding to it. To achieve
the highest possible swimming speeds and maximum propulsive effi-
ciency, the authors optimized the amplitude and frequency of each
CPG segment using the Particle swarm optimization (PSO) algorithm.
This optimization made it possible to achieve a movement speed of the
robot-fish of 0.5285 m/s. In the future, the authors plan to implement
real-time control training to adapt the robot fish to a dynamic aquatic
environment to achieve autonomous swimming.

In the article [68], the authors propose the CPG composed of six
oscillators consistently connected in a circle. As functional units, the
authors used generators, the output of which was the harmonic oscil-
lations with a fixed amplitude. Identical columns of three oscillators
were responsible for the left and right motors of the robot. The first
pair of oscillators controlled the left and right pectoral fins, the second
— the bending of the body, and the tail oscillators were responsible for
2 tails. Using a pair of pectoral fins inspired by insect wings (the fins are
located on the sides), the robotic fish achieved high maneuverability.
Due to the parallel arrangement of the two tail fins, the robot could
achieve high efficiency of movement and more stable swimming. To
achieve autonomous swimming, the robot was equipped with three in-
frared sensors located on the head, responsible for detecting obstacles.
All this makes it possible to use the robot for research and tasks in
difficult underwater conditions.

In contrast to fish CPG models composed of oscillators, there are
studies in which CPG segments are represented as biologically relevant
neural networks. In [69,70], the computationally efficient LIF model is
used as a neuron model. The structure of the CPG is based on that of

the lamprey CPG but contains only 3 segments (generators): 1 for the
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head and 2 for the tail. Each generator is divided into two components,
which are left and right symmetrical parts. Each CPG segment consists
of CIN, LIN, EIN, and MN (Section 2, Fig. 2E) neurons. Rhythmic
oscillatory activity is provided by the interaction of these neurons, and
each such neural network is an oscillator. Oscillators are connected to
each other by bidirectional synaptic connections. The phase differences
of the output signals in the model are determined using the Motor
Control Unit (MCU).

The MCU is the first CPG segment, which receives commands from
the upper level of the system. It acts like the brainstem of the CPG and
sends motor commands to the other generators to modulate the phase
difference of the output signals. The environmental data received by the
sensors of the robotic fish is evaluated by the MCU. Then, in accordance
with the decision-making mechanism responsible for the movement, an
input stimulus is sent to the sensory neurons (SN) in CPG. Next, SNs
send signals to different populations of neurons in the CPG segment. As
a result, the characteristics of the signals received by the MN change.
In the end, MN sends new signals to the servomotor.

The ‘‘Fuzzy Logic’’ subcontroller is used as the brain in the system.
It determines the adaptive locomotion modes in accordance with the
received sensory data. Sensory data comes from a 10-DoF IMU (in-
ertial measurement unit) module, which includes an accelerometer,
gyroscope, magnetometer, and barometer. Additionally, the front sight
unit consists of three infrared sensors. The fuzzy control approach
provides correct solutions with unlimited intermediate cruising routes
in complex real-world explorations, during which the robot encounters
more than one obstacle at the same time.

The results of applying the CPG model developed by the authors to
the i-RoF (Intelligent Robotic Fish) robot demonstrated a carangiform
type of locomotion and three specific gait modes: yaw, pitch, and keep
level; as well as smooth transitions between gait modes due to the
presence of sensory feedback. All experiments show that the proposed
closed-loop control structure achieves effective and robust responses for
real-world missions and explorations.

The authors compared the performance of their ‘‘Carangiform’’
robot model with other models. The ‘‘Thunniform’’ model [66] has
better forward speed characteristics, the stroke frequency is higher, but
it has a different type of movement. Despite this, the ‘‘Carangiform’’
robot model has efficient turning maneuverability with a high turning
speed and a small turning radius.

The paper [71] also presents a model of a fish with a carangiform
type of locomotion. The biomimetic robot carp consists of three parts:
the rigid head, the wire-driven body, and the compliant tail. The control
is a CPG based on the salamander CPG model [9] controlled by a high-
level command center. The authors adapted the Ijspreet model for use
with a single motor. The advanced CPG model synthesizes symmetrical
strokes when swimming and asymmetrical strokes when turning the
robot-fish. This robot model controlled by the CPG model proposed
by the authors has a number of advantages. The model uses only one
drive motor for waveforms, while other models require more motors.
Using the R time factor (the time ratio between two phases forming
one flapping cycle) makes the turning of the robot fish more natural
and efficient. Experimental results showed that the robot fish reached
a maximum speed of 1.37 body lengths per second and a maximum
turning speed of 457◦/s.

Recent studies have focused on the autonomy of developed robot
models. Other important aspects of research are computational effi-
ciency for fast operation and smooth movement, as well as minimizing
the power consumption of the robot. For example, in their work [72],
Yu et al. studied the effect of CPG parameter values on the energy
consumption of a two-joint self-propelled robotic fish. The authors
developed a real-time energy measurement system compatible with a
CPG-based robot controller and found that power consumption corre-
lates positively with changes in frequency and amplitude (an increase
in frequency and amplitude causes an increase in power consumption),
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while phase delay has little effect on power consumption.
4. Salamander

The study of the fundamentals of salamanders’ (Fig. 6) motor con-
trol organization is a significant direction for the formation of ideas
about the CPG evolutionary development. These amphibians, as one
of the transitional forms of life, are peculiar because of their ability
to rapidly change different types of locomotor activity. Of particular
interest is the switch from the rhythmic activity of the water type
to movements that provide gait. As shown in [73,74], stimulation of
the mesencephalic locomotor region in both the salamander and all
other classes of vertebrates causes locomotion, while different stimulus
strengths determine the change in the type of movement from slow to
fast. Two types of waves are very well traced in the CPG of the salaman-
der: standing and traveling waves, manifesting themselves in different
frequency ranges. Standing waves are characteristic of walking motion
(at low frequencies), while traveling waves provide the possibility of
swimming in water (at high frequencies). Morphologically, the sala-
mander CPG model consists of a body CPG and a limb CPG (Fig. 7).
The body CPG (as in the lamprey) is distributed along the entire length
of the spinal cord. It consists of a double chain of oscillatory centers
located on both sides of the spinal cord. The limb CPG is located in the
cervical segments for the forelimbs and the thoracolumbar segments
for the hindlimbs. It has connections with the body CPG in the caudal
direction and between the elements within itself.

Over the past decades, a lot of work has been done to study the
structure and functions of the CPG in salamanders, and several dozen
robotic devices with neuromimetic control systems have been built.
Excellent reviews can be found here [9,14,75]. However, new results
have been achieved in this area in the last few years. We will give a
chronological description of the developments over the past 15 years
with a focus on the salamander CPG models.

The classical work [76] was the first to propose a spinal cord model
and its implementation in a robot-salamander that demonstrated the
ability to rapidly switch between swimming and walking. The CPG
model consists of eight coupled pairs of nonlinear oscillators. Each
pair is responsible for its own node in the articulated body. Similar
to lamprey models, the bursting properties of a salamander CPG are
modeled using phase oscillators. It is important to note that when
connected in series and pairs, oscillators have both direct coupling and
feedback. In this case, the feedback also goes from the CPG of the limbs
to the CPG of the body, and the latter are tuned in such a way that
they can form traveling waves. At the same time, in contrast to lamprey
models, the salamander CPG differs in the presence of limb oscillators
which have lower intrinsic frequencies. At such excitation frequencies,
standing waves are generated leading to translational motion of the
body due to oscillations of the fore- and hindlimb on each side in
antiphase. The connections from the CPG of the limbs to the CPG of
the body are stronger than in the opposite direction, which allows the
CPG of the limbs, when activated, to force the rest of the robot CPG
into a walking mode. At the same time, actuators are controlled based
on the difference in bursts in coupled oscillators from the ‘‘left’’ and
‘‘right’’ body.

One of the many continuations of the work [76] was the study by
Harischandra et al. in 2011 [77]. They explored how sensory feed-
back influences the work of the salamander CPG. It should be noted
that the CPG consisted of 800 LIF neurons (500 excitatory and 300
inhibitory). The whole system contained 40 axial segments consisting of
identical parts (right and left; flexor and extensor), including excitatory,
inhibitory, and motor circuits. In this case, one part, when activated,
inhibits the other one. Excitatory neurons were connected into one
segment rostrally and three caudally, and inhibitory neurons — two
rostrally and six caudally. For simplicity, the system was limited to 14
pairs of coupled body generators. Each limb was a complex CPG of
three pairs of complex parts, due to this, the limb had three DoFs in
accordance with the anatomical structure. Interestingly, in this study,

the researchers reported a more successful trotting gait with increased
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Fig. 6. The description is the same as for lampreys (Fig. 2) and fish (Fig. 5), but for salamanders.
Fig. 7. Common scheme of the salamander CPG model. The CPG consists of a body CPG – a double chain of 2N oscillators – and a limb CPG – 4 oscillators for driving the limb
motors. The spinal cord CPG circuit and limbs CPG circuit both have nearest-neighbor couplings. Limbs CPG also have strong connections to the caudal part of the body CPG.
connectivity from the nodes of the limbs to the nodes of the body.
It was found that the proprioceptive sensory inputs are essential for
producing the walking gait and that the gait transition from walking to
trotting can be facilitated by the sensory inputs at the hip and scapula
regions detecting the late stance phase. Thus, the almost identical
scheme of the CPG [76] with subpopulations of LIF neurons instead
of single oscillators made it possible to improve the control system of
the salamander robot.

The next step in the development of the salamander CPG was
the model of various kinds of asymmetric connections between the
rostrocaudal segments, as well as the nodes of the CPG, which differ in
structure. This approach, presented in [78], can demonstrate switching
in motion types and works on CPGs based on oscillators and as well
as LIF neurons. The study is partly based on the data on the lamprey
CPG model described in [33]. The axial CPG network consists of 16
segments; intersegmental connections are directed caudally. In contrast
to previous work, the CPG of limbs is represented by simple networks
and only generates a rhythm (simplified limb model). In addition,
inhibitory connections from the CPG of the limbs go only to the two
nearest segments of the body CPG with a decreasing probability of
connection.

The various CPG operation types are evaluated by two parameters:
the frequency of oscillations (or spiking rate) and the phase lag between
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signals in neighboring segments. The authors propose the concept of
multistable neural networks, which allows the network not only to store
different patterns in the form of a set of phase lags but also to reproduce
them after applying various types of external stimuli in different areas.
In the oscillatory CPG model, this is achieved by limiting the spread
of rostral and caudal influence (connections from the main part of the
body CPG to the first and last segment are removed). A uniform inter-
segment phase lag is set along the cord without limiting the actual value
of the phase lag.

The connections between the segments of the body CPG were also
changed. In the rostrocaudal direction, they were five times stronger
than in the opposite direction. Due to this, the body CPG was divided
into a fast anterior and a slow posterior part. Accordingly, the phase
lags were then adjusted due to the initial phase lag of the segments. In
addition, the choice of gait or swimming was made due to the influence
of the limb CPG on the anterior oscillators.

Another work worth mentioning is [79], in which, as in the study
described above, the importance of inter-oscillatory connections for the
most successful variant of CPG functioning was emphasized. However,
the work also had a serious drawback: there were no motoneurons in
the CPG networks. A reduced version of the Hodgkin–Huxley neuron
was used there as an element of the CPG segments.
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Subsequently, works focusing on the greater biological relevance of
the models became popular. In 2018, Liu and Wang proposed a type of
CPG called Locomotion-controlled neural networks (LCNNS) [80]. The
LCNNSs consist of a new neuron model that reflects the spiked nature
of lamprey spinal neurons. These new LCNNSs can describe most of
the properties of real biological neural networks and can be used to
build salamander neural networks based on the bursts generator model
proposed by Guertin in 2009 [81].

In the same year, the authors of this model published a paper on
modeling salamander CPG on spiking neurons [82]. It postulated the
need for different neural circuits for each type of motion and speed, as
well as complex connection schemes between networks both within the
CPG of the limbs and within the CPG of the body. At the same time,
low-frequency CPG of the limbs is associated only with low-frequency
parts of the CPG of the body. This is justified by the data obtained in the
experimental study of the activity of pools of spinal interneurons [83],
which revealed that the recruitment of interneurons at faster speeds
(high frequencies) is accompanied by the silencing of those driving
movements at slower speeds.

In the model, neurons can be characterized by two different intrinsic
frequencies: high and low, depending on one of the two parts of the
global CPG to which they belong. At the same time, the networks are
also topologically identical. That is, the robot is controlled by a global
CPG, consisting of two separate networks of the same size, but with
different operating frequencies (the model is at least twice as large as
in previous works). The same applies to the CPG of the limbs. At the
same time, descending excitatory connections mainly predominate in
the CPG of the body. The minimum unit of the CPG is a network of
two neurons with mutual inhibition. It should be noted that in such
networks, lags between segments are not subject to separate regulation;
accordingly, the entire network has the same spiking rate as a single
neuron. In this case, the frequency response does not depend on the
amplitude.

In a direct continuation of the research [84], the authors modified
their model to achieve greater biological plausibility. In the new ver-
sion, a serious drawback has been eliminated: now the model contains
not only interneurons but also motor neurons. In addition, the con-
nections between the segments of both the CPG of the body and the
CPG of the limbs were modified. As a result, the ability to control the
direction of the first movement and perform a turn was demonstrated.
In addition, the model was enhanced by sensory communication in
the form of stretch receptors. The stretch reflex is known to play an
important role in controlling the posture of vertebrates.

The paper [85] continues to study the issue of the influence of
sensory inputs on the functioning of the CPG. In contrast to the earlier
study [78], here the robot is controlled by a network of oscillators
consisting of 25 segment pairs. The tail of the robot is a passive fin.
The new model is able to reproduce signals similar to recordings from
isolated species. In particular, spontaneous switching of the CPG from
slow caudorastral to fast rostrocaudal waves (with a change in the
excitatory spike) is observed. This work is also interesting because it
demonstrates the absence of the need for several CPGs to reproduce
patterns with different properties, as previously assumed.

Another work postulating the need for sensory feedback is the study
presented by Suzuki et al. 2021 [86]. The paper demonstrates a spon-
taneous transition between different patterns, but the CPG model uses
different feedback rules: limb-to-limb, limb-to-body, body-to-limb, and
body-to-body feedback without any connection between the oscillators.
The first rule is responsible for coordinating the four limbs as they move
forward to support the body. The second and third rules include cross-
feedback, which establishes self-organized body-limb coordination. The
fourth rule coordinates the lateral irregularities of the multi-segmented
body. That is, in the model, a flexible change in the parameters of the
CPG is possible due to the point impact on each individual oscillator
by a signal from the ‘‘brain’’ (analogous to tonic stimulation). This is
the first study demonstrating the spontaneous transition of gait from
horizontal walking with standing waves to a trotting gait with traveling
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waves.
5. Notes on the higher-level movement control

The higher-level control typically implies a command switching the
CPG gate and inducing the change of the animal movement mode. In
robotic fish models, it can be easily implemented by control signals
specifically changing phase shifts between CPG oscillators. However,
the higher-level control should also generate a kind of ‘‘fine-tuning’’ in
the adaptation of animal motion in a dynamic environment. Integrating
sensorial information from the periphery relative to the current state of
the actuator should generate the fine-tuning signal correcting the cur-
rent state of all actuators simultaneously. Obviously, such a correction
in the dynamic situation should also be predictive. So far, the existing
fish swimming CPGs have not implemented such a control.

One of the possible solutions for such a finely tuned motor control
was proposed by Rodolfo Llinas and colleagues [87,88] when studying
the olivo-cerebellar brain circuit in vertebrates [89] (Fig. 8). The
control is based on the network of interconnected neuronal oscillators,
e.g. the inferior olive neurons, that generate robust spatio-temporal
oscillatory patterns. Due to gap junctional coupling, they are capable
of synchronizing and generating a set of oscillatory clusters. These
clusters are further associated with a muscular contraction template,
e.g. a motor intention pattern. It was specifically reported that moments
of neuronal activations were finely précised reflecting the idea of
fine-tuning the motor activations. Connected by means of a rather
complicated architecture with cerebellar Purkinje neurons mediated
by cerebellar nuclei, the inferior neuron activations, e.g. the spiking
phase, can be set both in time and space by a specific mechanism of
self-referential phase reset [88]. Summarizing the sensorial information
relative to the effector feedback the control system generates correcting
signals that are sent back to the actuators.

Furthermore, the idea of the olivo-cerebellar cluster was imple-
mented to control underwater vehicles [90]. The movement of the
swimming robot was provided by oscillations of six fins. To control
them, a six-unit UCS was implemented in custom-made electronic
circuits. The sensorial signal was taken from a video camera. When
the fins were appropriately tuned, the robot demonstrated a different
gate of movement. Using the effect of self-referential phase reset [88]
corresponding motor pattern was finely tuned.

6. Discussion

In this paper, we reviewed research on mathematical modeling
of swimming CPG of various levels of sophistication and biological
plausibility. The studies on the development and analysis of the CPGs
models are clearly multidisciplinary because they require the interac-
tion of mathematics, biology, and robotics. Such studies are inspired
by the insights that they can provide to the neuroscience behind fish
locomotion and robotic locomotion since this kind of bio-motivated
controller demonstrates strong capabilities in terms of autonomy and
modulation. On the one hand, the main trend in the development of
the CPGs for robotic applications is an increase in the complexity of
the models, on the other hand, despite the multiplicity of possible im-
plementations, the CPGs demonstrate conceptually similar patterns of
swimming behavior for both primitive fish and advanced salamanders.
Mathematical modeling of the CPG remains relevant and attracts a
growing number of researchers. CPG models based on phase oscillators,
which are still popular for robotic embodiments, are increasingly being
replaced by bio-inspired spiking CPGs that exploit the theoretical ad-
vantages of neuromorphic hardware in terms of energy efficiency and
computational speed.

Aquatic locomotion has always received a lot of attention due to
the demand for the design of underwater robots. The fish swimming
gait can roughly be classified into four categories: anguilliform type,
carangiform type, thunniform type, and ostraciiform type. According to

this classification, a variety of biomimetic underwater robots have been
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Fig. 8. Schematic view of the universal control system (USC) based on the olivo-cerebellar dynamics. UCS oscillators, mimicking the inferior olive neurons, generate a robust
pace–time distribution of oscillatory phase clusters with precise timings. The robustness is sustained due to an interval feedback loop involving activations of cerebellar Purkinje
eurons and cerebellar nuclei. Phase clusters are associated with the muscle activation template in the effector system. Sensorial information and the effector feedback are sent
or the comparison of an actual motor template with the one imposed by the sensorial inputs.
ource: The scheme was modified from [87–89].
esigned. The most implemented of them are the anguilliform type and
arangiform type of gaits.

CPGs of lampreys and swimming amphibians are characterized by
he presence of a dominant locomotor rhythm at the output, which
oes not require a similar signal at the input. This makes it possible to
tilize the traveling wave for the anguilliform type of swimming, while
ensory feedback plays a crucial role in the modulation of periodic
atterns. A distinctive feature of CPGs of tuna and other scombrid
ish, as high-performance swimmers, is the ability to operate at high
requencies of caudal fin flapping to achieve the desired speed while
aintaining reasonable energetic costs.

Focusing on CPG, researchers discovered mechanisms of locomotion
nd implemented them in robotic devices. Robots can swim in different
ating modes generated by CPG controllers. However, robots are still
ar from their biological prototypes in terms of performance, energy
fficiency, and maneuverability. To our understanding, the problem is
ot only the design of biomorphic muscular-like actuators, but also
he control system that should provide not only locomotion but also
multi-dimensional sensory–motor transformation including an inten-

ion of movement, adaptive tuning of muscular activation template,
nd many other subtle parameters. Such parameters may include, for
nstance, the geometry of the flexible fish during movements, state
f fish scales, fish body stiffness, and many others. In particular, it
as recently found by Zhong and coauthors [91] that the adaptive

hanges in body stiffness during swimming can significantly improve
he performance of thunniform movement. It means that the result of
he sensory–motor transformation is corrected not only by the loco-
otory gate but also by the body state parameters. In the numerical

imulation, Feng and coauthors [92] analyzed how caudal fin de-
ormation may influence thunniform movement hydrodynamics and,
ence, resulting movement performance. Along with many variants
f locomotions, shapes and sizes all fish have a large number of fine
ynamic parameters to be tuned simultaneously by the control system
ptimizing the current mode of fish movement. A growing number of
ecent publications addressing these questions demonstrated a clear
rend to achieve true biomorphic solutions in fundamental science and
ntelligent robotics.
12
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