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Abstract A nonlinear effect of biological feedback
on visual perception is studied when a brain–computer
interface is applied. The implemented algorithm for
estimation of visual attention is based on the time–
frequency analysis of human electroencephalograms in
real time by measuring the amplitude of the stimulus-
related brain response, which takes subsequently posi-
tive and negative values. The analysis shows that time
intervals with positive amplitude are associated with
periods of sustained attention, whereas time intervals
with negative amplitude are related to mental fatigue.
The comparison of the results obtained in two groups of
subjects, one without feedback and another with feed-
back, demonstrate that the feedback control prolongs
the periods of sustained attention. The largest interval
of sustained attention in the former group reached only
100± 20 s versus 150± 40 s in the latter group. How-
ever, themean degree of attention, estimated by averag-
ing the brain response amplitude over the whole inter-
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val, was 27% lower in the group with feedback than in
another group. The obtained results evidence that cog-
nitive resource is limited, and therefore, to maintain
high performance for prolonged time, the brain has to
work in a “safe-mode” regime.
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Brain–computer interface · Biological feedback

1 Introduction

The brain neural network is a very complex nonlin-
ear system [1,2] in which dynamics is often studied by
analyzing electrical signals recordedwithmultichannel
electroencephalography (EEG) [3]. Each EEG channel
detects a total current of a large group of neurons in the
neural network. The EEG signal has a complex time–
frequency structure with specific dominant frequencies
(δ, α, β, γ , etc.) and characteristic oscillatory patterns
[4–7]. Since there is a strong correlation between elec-
trical brain activity and brain states [8], the analyses
of EEG time–frequency structure and oscillatory pat-
terns provide information about dynamical states of the
neural network.

The interest in studying brain dynamics using EEG
is not limited to fundamental knowledge, but also
caused by important applications, for example, in
brain–computer interfaces (BCIs) which require real-
time detection and analysis of electrical (or mag-
netic) brain activity with subsequent transformation
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of obtained information into computer commands for
feedback control [9–11]. The general aim of BCI is
to repair or enhance human performance [12], for
example, to help paralyzed people to control pros-
thetic devices [13] and interact with the environment
[14]. This requires a permanent information exchange
between brain and computer, i.e., two-way data trans-
fer in the BCI, where the information arriving from the
brain to the computer allows continuous monitoring of
the brain state evolution and generation of control com-
mands for hardware. On the other hand, the informa-
tion which comes back to the operator is used either by
the operator for self-control of his/her brain activity or
by hardware/software to affect the brain directly. Such
exchange of information between brain and computer
is known as biological feedback.

The biological feedback is required for different
types of BCI. For instance, in neuroprosthetics, a sen-
sory feedback allows the user to “feel” rigidity and
elasticity of the object and therefore effectively modu-
late the grasping force of a prosthesis. As was recently
shown, the feedback is an efficient tool for training peo-
ple to control a prosthesis [15]. Along with visual and
auditory stimuli [16], the feedback was used to stimu-
late median and ulnar nerves according to information
provided by artificial sensors from a hand prosthesis
[17]. This feedback control enabled the participant to
effectively modulate the grasping force of the prosthe-
sis without visual or auditory feedback [17]. In addi-
tion to motor-related brain activity, the feedback can
be used to control psycho-physiological states, espe-
cially those associated with high mental functions. The
effects of feedback control on the time–frequency EEG
structure during performance of mental task were stud-
ied many years ago. For instance, De Pascalis and Sil-
veri [18] demonstrated that biofeedback regulation and
convertmental activity affect EEGα-asymmetry. Later,
the influence of feedback on the performance in strate-
gic skill acquisition tasks was also investigated [19].
Obviously, the feedback is a key part of the human–
machine systems. At the same time, its effective use
for controlling brain dynamics requires a deep under-
standing of the basic principles of neural brain activity
under this type of control.

It is known that feedback control can dramati-
cally change the behavior of a nonlinear system. For
instance, the feedback can lead to a more complex
or even chaotic behavior in simple systems, such as
a pendulum [20,21]. Although a weak control can be

achieved evenwith linear feedback, nonlinear feedback
provides advanced control opportunities. For example,
linear-plus-nonlinear feedback applied to a dynamical
system can control bifurcations and the system transi-
tion to various states [22–24]. The application of non-
linear feedback was extended and generalized for a
wide class of dynamical systems [25]. Furthermore,
the implementation of feedback control is not limited
to model systems. One can find examples of complex
feedback control in many natural and engineering sys-
tems, e.g., sway reduction on container cranes [26], the
plunge and pitchmotions of awing [27], lasers [28,29].
In the sameway, the human brain, being a strongly non-
linear system, can also be affected by feedback in an
unpredictable way. Unfortunately, the main principles
of brain feedback control are not yet established.

According to this, the aim of the present work is
to study how feedback control affects human attention
during visual perception. This research was stimulated
by recently obtained results [30] on the effect of a real-
time BCI on human attention. To quantify visual atten-
tion, we developed an algorithm based on the time–
frequency structure of EEG signals. As soon as the sub-
ject’s attention felt, an audio signal was sent to inform
his about it, and after that, his attention increased. We
expected that such feedback control will also increase
a mean level of attention during the whole experimen-
tal session. However, this is not true. The results of
the present work show a rather unexpected outcome.
Although the feedback control does enlarge time inter-
vals with a relatively high level of attention, the mean
level of attention is not so high as in the uncontrolled
group.

The paper is organized as follows. In Sect. 2, we
describe materials and methods, and in Sect. 3 the
results of the EEG analysis. Then, in Sect. 4 we demon-
strate nonlinear effects of the feedback control on the
brain dynamics and provide a detailed discussion in
Sect. 5. Finally, main conclusions are given in Sect. 6.

2 Materials and methods

2.1 Subjects, stimuli and recordings

Twelve healthy subjects from a group of students,
researchers, and staff of the Yuri Gagarin State Techni-
cal University of Saratov, males and females, between
the ages of 20 and 28 with normal or corrected-to-
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normal visual acuity participated in the experiment. All
participants provided informed written consent before
the experiment.

Our recent studies [30] provide the experimental
evidence that the use of ambiguous images as visual
stimuli increases subject’s alertness. Therefore, in the
present work all experiments were carried out with
ambiguous visual stimulus, namely, with the Necker
cube [31]. Among many types of bistable visual stim-
uli, the Necker cube is the most explored one. Due to
its simplicity and symmetry, it was widely explored
in many psychological and neurophysiological experi-
ments [32–34] and theoretical models [34–36]. At the
same time, detailed studies of neural mechanisms of
bistable perception demonstrated similar results for
other bistable stimuli (see, e.g., [37]). The important
advantage of this image over the others is the possibility
to control its bistability by varying the contrast of inner
lines, as shown in Fig. 1. Since this cube has transparent
faces and visible edges, the observer without any per-
ceptional abnormalities perceives it as a 3D object due
to the specific position of the ribs. Bistability in percep-
tion of the Necker cube consists in its interpretation as
either left- or right-oriented, depending on the contrast
of the inner edges. The contrast g ∈ [0, 1] of the three
edges centered in the left lower corner was used as a
control parameter. At the same time, the contrast of the
other three inner edges centered in the right upper cor-
ner was set to 1−g. The values g = 1 and g = 0 corre-
spond, respectively, to 0 (black) and 255 (white) pixels’
luminance of the inner lines. Therefore, we can define
a contrast parameter as g = y/255, where y is the
brightness of the inner lines using the 8-bit grayscale
palette. Alongwith the cases of unambiguous fully left-
(g = 0) or fully right-oriented (g = 1) cubes and
completely ambiguous (g = 0.5) cube, we presented
samples with various configurations in the ranges of
0 < g < 0.5 and 0.5 < g < 1 corresponding to sta-
tistically left-oriented and right-oriented cubes, each
differed from the previous one. Presenting the stim-

uli with different configuration allowed us to minimize
memory effect and habituation of the subject, and con-
sidered each perception independently of the previous
one. For good statistics, we analyzed many EEG tri-
als obtained during perception of a large number of
sequentially displayed images.

The subjects were comfortably sitting at a 70–80
cm distance from a 24′′ LCD monitor with an approx-
imately 0.25 rad visual angle. The Necker cubes with
different contrasts of the inner edges were displayed on
a white background in the middle of the monitor with
a spatial resolution of 1920× 1080 pixels and a 60-Hz
refresh rate.

The perception of an ambiguous image is known to
be associated with an increase in electrical activity of
neurons in the occipital lobe [38,39], that is, explained
by the existence of visual areas in the occipital lobe
and attentional areas in parietal lobe [40]. Therefore,
in the present work, we restricted our analysis to the
EEG recordings from 5 electrodes only, located in the
occipital (O1 and O2) and parietal (P3, P4, Pz) lobes
[30] according to the 10–20 electrode layout [41], as
shown in Fig. 2.

To register the EEG data, the cup adhesive Ag/AgCl
electrodes were fixed on the scalp with the help of
“Tien–20” paste. Before the experiment, we put the
abrasive “NuPre” gel on the scalp to increase the skin
conductivity. After the electrodes were installed, we
monitored the impedance which varied within a 2–
5-k� interval. The ground electrode N was located
above the forehead, and the reference electrodes A1

and A2 were attached to the mastoids. For filtering
the EEG signals, we used a band-pass filter with cut-
off points at 0.016 Hz (HP) and 70 Hz (LP), as well
as a 50-Hz Notch filter. We also registered the elec-
trooculograms (EOG) to remove eye blink artifacts
by means of our own method based on the Gram–
Schmidt orthogonalization [42]. For amplification of
theEEGandEOGsignals and analog-to-digital conver-
sion, we used the electroencephalograph “Encephalan–

Fig. 1 Bistable visual
stimuli. Examples of Necker
cubes with different values
of control parameter g
defined by the contrast of
inner lines

detneiro-thgirylluFdetneiro-tfelylluF

g = 0 g = 0.15 g = 0.5 g = 0.85 g = 1

degree of ambiguity
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Fig. 2 Experimental
design. a The volunteer is
subjected to the visual task
which includes perception
and primary processing of
visual information. EEG
signals are recorded from
parietal and occipital areas
and processed in real time.
The feedback is realized via
audio signal. b Location of
five recording electrodes on
the scalp

Feedback

EEG processing

EEG
Visual

Stimulation

Information about presented stimuli

occipital

parietal

O1 O2

P3 P4
Pz

(a) (b)

EEGR–19/26” (“Medikom-MTD,” Taganrog, Russia)
with multiple EEG channels and two-button input
device (keypad).

2.2 Experimental procedure

The experiment contained two sessions.All twelve sub-
jects were initially divided into two groups, six in each
group. In the first session, the experiments were per-
formed in both groups without feedback control. The
feedback was applied to the second group only, and
only in the second session. The design of our exper-
iment is illustrated in Fig. 2. All participants were
instructed to press either left or right key on the input
device depending on their first impression on the cube
orientation at each presentation.

For all subjects, the second session was performed
one month after the first session. Each session lasted
30 minutes. Each Necker cube was presented for a
short interval between 1.0 and 2.0 s. Such a relatively
short duration of the stimuli presentation was chosen to
reduce the stabilization effect because, as known [43],
the probability of persisting interpretation of a previ-
ous image strongly depends on the stimulus duration.
For the Necker cube, the required time of consistent
observation was found to be about 1.0 s [44]. Although
the “memory” effect cannot be completely avoided, it
can be significantly diminished by making a length of
stimulus exhibition shorter than 2.0 s. Moreover, a ran-
dom change in the control parameter g also prevents

the perception stabilization. Lastly, to draw away the
observer’s attention and make the perception of the
next Necker cube independent of the previous one, dif-
ferent abstract pictures were exhibited for about 5–6s
between subsequent demonstrations of theNecker cube
images.

2.3 Algorithm for real-time EEG analysis

The algorithm flowchart is schematically illustrated
in Fig. 3. It includes six steps:

1. EEG acquisition As mentioned above, the EEG
signals were recorded by five electrodes (O1, O2,
P3, and P4, Pz) with a 250-Hz sampling rate. The
typical recording set is shown in Fig. 3a. The start-
ing time of the i th image presentation is shown by
a vertical dashed line in the right panel.

2. Time–frequency EEG analysisWeused the contin-
uous wavelet transform [45]. The wavelet energy
spectrum En( f, t) = √

Wn( f, t)2 was calculated
for eachEEGchannel Xn(t) in the frequency range
of f ∈ [1, 30] Hz. Here, Wn( f, t) is the complex-
valued wavelet coefficients calculated as

Wn( f, t) = √
f

t+4/ f∫

t−4/ f

Xn(t)ψ∗( f, t)dt, (1)

where n = 1, . . . , N is the EEG channel num-
ber (N = 5 being the total number of channels
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Fig. 3 Algorithm
flowchart. a EEG
acquisition and a typical set
of EEG recordings from five
channels (ti is the starting
time of i th presentation).
b Wavelet energy spectrum
calculation and typical
fragment of wavelet energy
distribution during
perception of i th stimulus.
c Extracting spectral
components and typical
time dependence of main
spectral components during
the transition from
background EEG (ΔtI ) to
the perception of the visual
stimulus (ΔtI I ). Red and
blue colors indicate α (red)
and β (blue) frequency
bands, respectively.
d Histogram showing the
values of A and B
calculated by Eqs. (3) and
(4) in time intervals ΔtI and
ΔtI I . e Temporal evolution
of the degree of visual
attention I during
experimental session. The
threshold value Ith = 0 is
shown by the horizontal
dashed line. f Logical
condition for feedback
control activation
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used for the analysis) and “*” defines the complex
conjugation.
The important problem in using the wavelet trans-
form is a choice of the appropriate mother wavelet
for data analysis. This choice depends on both the
aim of the study and characteristics of the ana-
lyzed signal. The most commonly used mother
wavelets are Morlet, MHAT (or DOG), Paul, and
FHAT. Two of these mother wavelets, MHAT and
FHAT, are real, while the others are complex [46].
In this work, we used the wavelet analysis for the
extraction of the main spectral component with
respect to the phase of the brain rhythm. There-
fore, possible options for the mother wavelet in
this particular study are mostly reduced to com-
plex wavelets. According to Ogden et al. [47], the
complexMorlet wavelet is very convenient for the
analysis of multiple-frequency non-stationary sig-
nals, such as EEG recordings which consist of a
great number of rhythms and oscillatory patterns.
The comparison of the results on the EEGwavelet
analysis with different complex mother wavelets
[46] shows that the complex Morlet wavelet pro-
vides clearerwavelet surface andbetter overall res-
olution in the time–frequency domain. This fea-
ture allows localizing (with good enough accu-
racy) time moments when the signal structure is
altered, that is, very useful for the main spectral
component extraction.
The Morlet mother wavelet function ψ( f, t) is
defined as

ψ( f, t) = √
f π1/4e jω0 f (t−t0)e f (t−t0)2/2, (2)

where ω0 = 2π is the central frequency of the
Morlet mother wavelet [48]. Figure 3b illustrates
typical time–frequency dynamics of the wavelet
spectral energy value E( f, t) during visual per-
ception. One can see that time–frequency struc-
ture of the EEG signals is characterized by a local
increase in the wavelet energy value in the α-
frequency range (8–12Hz) before image presenta-
tion and in the β-frequency band (15–30Hz) dur-
ing image perception.

3. Extracting spectral components In order to
describe changes in the time–frequency structure
of the EEG signals, induced by presented visual
stimuli, we analyzed dynamics of the main spec-
tral components. We defined the main component

as a frequency atwhich thewavelet energy exhibits
a local maximum in the power spectrum. First, in
the energy spectrum E( f ) we found frequencies
corresponding to all local maxima. Then, for each
channel we took into account up to five spectral
components ( f1, . . . , f5) at which global (at f1)
and four local maxima were observed with cor-
responding wavelet energies E( f1), . . . , E( f5),
where E( f1) > E( f2) > · · · > E( f5). Then,
having calculated the wavelet spectrum E( f ) and
extracted the frequencies ( f1, . . . , f5) for subse-
quent times, we analyzed how the main spectral
components evolved in time.
According to our recent work [30], visual atten-
tion is associated with the interplay between α

(8–12Hz) and β (15–30 Hz) frequency bands
in occipital and parietal areas. Therefore, we
considered the values ( f1, . . . , f5) belonging to
these particular frequency bands. Figure 3c shows
a typical time dependence of the frequencies
( f1, . . . , f5) belonging to α and β frequency
bands, during the transition frombackgroundEEG
(ΔtI ) to the perception of visual stimulus (ΔtI I ).
Red and blue colors indicate the belonging of the
spectral component to either α or β frequency
band.

4. Quantification of perceptual process In order to
quantify the efficiency of the stimulus process-
ing by the observer, we compared brain dynam-
ics in 1-s intervals immediately before and after
the onset of stimulus presentation. For this pur-
pose, we calculated the location of the maximal
spectral components during the presentation of i th
stimulus (A1

i , A2
i , B1

i , B2
i ). These values statis-

tically describe the dominant frequencies using
EEG data taken from all occipital and parietal
channels before and after the onset of image pre-
sentation, as follows

A1,2
i =

N∑

n=1

∫

t∈Δt i
1,2

[
K∑

k=1

ξn
k (t ′)dt ′

]

,

ξn(t) =
{
1/k, if f n

k ∈ Δ fα,

0, if f n
k /∈ Δ fα.

(3)

B1,2
i =

N∑

n=1

∫

t∈Δt i
1,2

[
K∑

k=1

ξn
k (t ′)dt ′

]

,

ξn(t) =
{
1/k, if f n

k ∈ Δ fβ,

0, if f n
k /∈ Δ fβ.

(4)
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Here, N = 5 is the total number of EEG chan-
nels taken into consideration, f n

k is the location of
kth maximal spectral component belonging to nth
channel, K = 5 is the number of analyzed spectral
components, and Δt i

1,2 indicate 1-s time intervals
preceding and following the i th image presenta-
tion (see Fig. 3c). The histogram in Fig. 3d shows
typical A and B values calculated for each image
presentation.

5. Assessment of subject’s attention. According to
existing works on human attention, including our
recent papers [30,49], visual attention is associ-
ated with activation of an “attentional center” in
the parietal cortex, which operates in the 15–30Hz
range [40], i.e., increasing visual attention acti-
vates β-waves in the parietal area. In addition,
visual stimulus processing strengthens connectiv-
ity between occipital and parietal areas in α- and
β-frequency bands [50,51], which, in turn, causes
a growth of β-activity in the occipital cortex.
Finally, many studies evidence that visual infor-
mation processing along with an increase in β-
activity simultaneously inhibits α-wave activity.
According to our recent study [49], the increased
visual attention causes a percept-related increase
in β-activity with an accompanying decrease in
α-activity.
Taking into account the above observation, the
subject’s attention during visual stimulus process-
ing can be quantified as

I (ti ) = (A
1
i − A

2
i ) + (B

2
i − B

1
i )

2
, (5)

where A
1,2
i and B

1,2
i define the values of A1,2

i

and B1,2
i averaged over six preceding events (i −

6, . . . , i). Such averaging is performed in accor-
dance with our previous results [30], where we
demonstrated that when stimuli are processed dur-
ing a short time, the subject sometimes exhibits
low attention during a single event, even while
demonstrating overall high attention during the
whole session. One can see that I (ti ) reaches a
maximal positive value, if the terms in both brack-
ets in Eq. (5) are high and positive. This corre-

sponds to a state of high attention when A
1
i > A

2
i

and B
2
i > B

1
i , i.e., when α-activity decreases and

β-activity increases. On the contrary, I (i) reaches

a minimal negative value when A
1
i < A

2
i and

B
2
i < B

1
i . Finally, I (i) is zero when changes in

α- and β-activity are insignificant.
Figure 3e shows typical evolution of attention I (t)
during the experimental session.

6. Feedback activation. The value of attention I was
calculated using Eq. (5) after each visual stimu-
lus was processed by the subject, and compared to
the threshold value Ith (see Fig. 3f). In our study,
Ith was set to zero, and the feedback was orga-
nized as a short audio tone after the stimulus was
processed, each time when I ≤ Ith. The subject
was previously instructed to associate this sound
message with a low attention state.

3 Results of EEG analysis

At the first stage, we analyzed the effect of the feedback
control on subject’s cognitive performance by compar-
ing I values obtained in the first and second sessions.
Figure 4a shows a typical change in the attention degree
I for one subject from thefirst group (without feedback)
during the first (red line) and second (blue line) exper-
imental sessions. One can see that the attention degree
I oscillates with average period of T ≈ 150 s. Dur-
ing each period, the subject processes about 20 visual
stimuli.We suppose that time intervals where I > 0 are
associated with the state of increased attention, when
a large group of neurons actively participate in visual
information processing, whereas the intervals where
I < 0 are related to a refractory state of neural dynam-
ics.

We compared the mean values of attention during
the first (I I ) and second (I I I ) experimental sessions
for every subject from thefirst (GROUP1;without feed-
back) and second (GROUP2; with feedback) groups to
find the differenceΔI = I I I −I I .As seen fromFig. 4b,
the mean difference between I I and I I I in GROUP2
is positive (ΔI > 0), while in GROUP1 it is negative
(ΔI < 0), in spite of a relatively large standard devi-
ation (SD) among different subjects in the group. In
order to define, whether or not the change between I I

and I I I is significant for these groups, we applied the
Wilcoxon signed-rank test, usually used to compare
two related short samples. As a result, we obtained
p = 0.345 and p = 0.51 for the first and second
group, respectively. This evidences that the changes
in the mean level of visual attention between the first
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Fig. 4 Results of feedback control. a Typical time evolution
of the degree of visual attention I during first (red) and second
(blue) experimental sessions for one subject from the first group
(without feedback). b Changes in the mean value of attention I

during the first and second sessions for subjects from the first
(white box, without feedback) and second (black box, with feed-
back) groups. The data are shown as mean± SD (*p < 0.05 by
Wilcoxon signed-rank test, n = 6)

and second sessions in both groups are insignificant.
For the group without feedback control, this result was
expected because the subjects demonstrated more or
less the same mean value of I in two different sessions,
and for the controlled group, it is rather surprising. The
reason for this kind of behavior can be understood if
we suppose that the cognitive resource to maintain sus-
tained attention for a long time is limited, so that the
brain needs rest to recover its cognitive resource.

For deeper understanding of the feedback control
effect on the percept-related brain activity, we ana-
lyzed the dependency of I in detail. More precisely,
for each experimental session, we extracted time inter-
vals where I > 0. Such intervals marked by δ1, δ2 and
δ3 are shown in Fig. 5. The values of δ1,2,3 define the
lengths of these intervals. As alreadymentioned above,
we suppose that positive values of the brain response
amplitude indicate increased attention of the subject
and the brain ability to allocate its cognitive resource
for visual information processing. On the other hand,
time intervals with negative I correspond to a recov-
ery period of the parieto-occipital neural network and
redistribution of mental workload over more complex
neural network.

For every interval δi , we calculated coefficient γ (δ)

associated with the mean degree of attention over inter-
val δi of sustained attention, as follows

γ (δ) =
∫

t ′∈δi

I (t ′)dt ′. (6)

As a result, for each session we obtained a set of val-
ues (δ,γ (δ)) which characterized the intervals, during
which the subject demonstrated high degree of atten-
tion.

In Fig. 6, we plot the attention state of every subject
in the two-parameter space of (δ, γ (δ)) from the first
(without feedback) (Fig. 6a) and second (with feed-
back) (Fig. 6b) groups. The red and blue dots indicate
the values obtained during the first and second exper-
imental sessions, respectively. We remind that in the
first session in both groups, the feedback control was
not applied. It was only applied in the second session
in GROUP2 (blue dots in Fig. 6b). One can see that
in GROUP1 there is no difference between the distri-
butions obtained in two sessions, whereas in GROUP2
the difference is significant. In the first session (without
feedback) in GROUP2, all (red) points are distributed
in the range of δ < 100 s, and in the second session
(with feedback), some (blue) points lie in the region
with δ > 100 s and γ < 100. This means that the
feedback control forces the subject to maintain his/her
attention on the visual stimuli for longer time than in
the first session (without feedback).

Since the cognitive brain resource is limited, the
occurrence of prolonged intervals of sustained atten-
tion leads to a decrease in the mean value of attention
I calculated for these intervals, as clearly seen from
Fig. 6a, b. In GROUP1, the subjects sometimes exhibit
high mean values of attention (γ (δ) > 100) in both
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Fig. 5 Solid red curve
shows typical fluctuations
of stimulus-related brain
response amplitude I . δ1,2,3
define the length of time
intervals, for which the
brain response amplitude is
positive (I > 0) (time
intervals with sustained
attention). γ (δ1,2,3) are the
mean values of the brain
response amplitude over
these intervals, calculated
with Eq. (6)
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sessions (Fig. 6a), and in GROUP2, the subjects have
high mean values of attention (γ (δ) > 100) in the first
session only (i.e., without feedback), but not in the sec-
ond session (with feedback) (Fig. 6b). Nevertheless,
the number of time intervals where the mean attention
degree takes a positive value (γ (δ) > 0) is higher in
GROUP2 than in GROUP1. This means that the feed-
back control increases not only the duration of time
intervals of sustained attention, but also the number of
these intervals.

Finally, in order to statistically characterize the
changes in the values δ and γ (δ), we found their max-
imal values δmax

I,I I and γmax
I,I I obtained during the first

and second sessions in two groups. Then, we calcu-
lated the ratios of these maxima, i.e., γmax

I I /γmax
I and

δmax
I I /δmax

I . The obtained results are summarized in
Table 1 for GROUP1 and Table 2 for GROUP2. The
mean ratios γmax

I I /γmax
I and δmax

I I /δmax
I are presented

in Fig. 7 as mean±SD for subjects from GROUP1
(white box) andGROUP2 (black box). One can see that
the ratio δmax

I I /δmax
I for the subjects from GROUP2 is

higher than forGROUP1 (1.6±0.59 versus 1.14±0.59;
see Fig. 7a). This evidences that the feedback control
increases the maximum duration of the state of sus-

tained attention. The statistical analysis of the values
δmax

I,I I obtained in the first and second sessions per-
formed via Wilcoxon signed-rank test yielded p <

0.05 for GROUP2 and p = 0.893 for GROUP1.
While the maximum duration of the time interval of

sustained attention (I > 0) increases in the presence
of feedback, the maximum mean value of I (within
this interval) decreases. This weakening of attention is
demonstrated in Fig. 7b through the ratio γmax

I I /γmax
I .

One can see that the ratio γmax
I I /γmax

I is equal to
0.71 ± 0.08 and 1.12 ± 0.56 for GROUP2 (with feed-
back) and GROUP1 (without feedback), respectively.
The Wilcoxon signed-rank test provided p < 0.05 for
GROUP2 and p = 0.686 for GROUP1.

4 Effect of feedback control

Perception and processing of visual stimulus are known
to induce stimulus-related brain response in the parieto-
occipital part of the brain [40]. This response is caused
by the excitation of neuronal activity in attentional
and visual centers and can be measured as changes in
the energy of α and β-waves. The amplitude of this
response can be measured by terms of α- and β-wave.
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Table 1 The values of δmax
I,I I and γmax

I,I I calculated for GROUP1 during sessions 1 and 2

Subject γmax δmax (s)

Session 1 Session 2 Ratio Session 1 Session 2 Ratio
(γmax

I ) (γmax
I I ) (γmax

I I /γmax
I ) (δmax

I ) (δmax
I I ) (γmax

I I /γmax
I )

1 100 113 1.13 16 19 1.18

2 104 84 0.8 49 11 0.22

3 161 110 0.68 32 60 1.87

4 42 94 2.23 6 10 1.67

5 85 71 0.83 41 32 0.78

6 103 111 1.07 15 17 1.13

Mean (±SD) 99.16 (±38.29) 97.16 (±17.17) 1.12 (±0.56) 28.8 (±16.78) 24.83 (±18.94) 1.14 (±0.59)

δmax
I,I I are maximum lengths of time intervals during which the subject maintained sustained attention (I > 0). γmax

I,I I are maximum values
of the mean brain response amplitude

Table 2 The values of δmax
I,I I and γmax

I,I I , calculated for GROUP2 during sessions 1 and 2

Subject γmax δmax (s)

Session 1 Session 2 Ratio Session 1 Session 2 Ratio
(γmax

I ) (γmax
I I ) (γmax

I I /γmax
I ) (δmax

I ) (δmax
I I ) (γmax

I I /γmax
I )

1 121 94 0.77 14 38 2.71

2 104 78 0.75 16 19 1.18

3 107 89 0.83 24 29 1.2

4 68 42 0.61 6 11 1.83

5 100 62 0.62 16 20 1.25

6 97 69 0.71 37 53 1.43

Mean (±SD) 99.5 (±17.53) 72.33∗ (±19.06) 0.71 (±0.08) 18.83 (±10.59) 28.33∗ (±15.22) 1.60 (±0.59)

δmax
I,I I are maximum lengths of time intervals during which the subject maintained sustained attention (I > 0). γmax

I,I I are maximum values
of the mean brain response amplitude
∗ p < 0.05 by Wilcoxon signed-rank test, n = 6
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Fig. 7 Ratio between values a δmax
I and δmax

I I and b γmax
I and

γmax
I I obtained for the first and second sessions for subjects from

GROUP1 (white boxes) and GROUP2 (black boxes). The data
are shown as mean±SD (*p < 0.05 by Wilcoxon signed-rank
test, n = 6)

Also, the task complexity is known [30] to increase the
mean energy by engagingmore neurons for stimuli pro-
cessing. This means that the brain increases its power
by enlarging a size of the neural network involved in
information processing in order to solve more difficult
cognitive task. If the mean brain response amplitude
is defined as I and the mental workload level as M ,
then the function I (M) monotonically increases when
M < M∗, where M∗ is a critical workload.

On the other hand, during valuation of a prolonged
visual task, themental fatigue affects brain activity, i.e.,
the mean brain response amplitude decreases during
fatigue-inducing mental tasks [52]. Therefore, if the
mean brain response amplitude is defined as I and T
being the time which the brain spends for solving the
task, then I (T ) monotonically decreases when T >
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T ∗, where T ∗ is a time interval for which the effect of
mental fatigue is not pronounced.

Taking the foregoing into account, we suppose that
the feedback which informs the subject that his/her
brain response amplitude decreases makes the brain
to increase again its processing power and therefore
the mean brain response amplitude. Thus, the feedback
realized with BCI leads to higher I during the pro-
longed session, as compared to the amplitude obtained
for session without BCI.

At the same time, we found that the value of I
obtained during the first (feedback-controlled) sessions
remained the same as for the session without feed-
back. Figure 8 illustrates a typical time evolution of
the brain response amplitude. I (t) exhibits fluctuations
which contain traces with positive and negative I cor-
responding to high brain activity and refractory peri-
ods of neural ensemble activity, respectively. Let us
now consider the time interval T 1 < DeltaT < T 2

where the neuronal ensemble is involved in generation
of the percept-related brain response.Having compared
the I (t) dependence during Session 1 (without feed-
back) and Session 2 (with feedback), one can see that
in the former case (Fig. 8a) the brain response ampli-
tude exhibits the higher peak and reaches themaximum
value faster than in the latter case (Fig. 8b). At the same
time, the duration of the intervalwith positive I is larger
in the latter case (ΔTI I > ΔTI ). The process is subse-
quently repeated many times during each session, and
the comparative results are averaged over whole ses-
sion time.

Thus, the nonlinear effect of biological feedback
on the brain attentional state can be summarized as
follows. Although the feedback decreases a maxi-
mum value of the brain response, it activates a non-
linear mechanism which suppresses neural excitation
to maintain the brain activity at a relatively high level
during larger time.

5 Discussion

The obtained results evidence the following nonlinear
effects.

(i) The degree of attention (DA) estimated on the
base of spectral properties of parieto-occipital
EEG evolves in time according to a periodic law.
The time intervals during which DA is high are
replaced with ones with lower DA.

(ii) Biological feedback implemented via a sound
message which informs the subject about decreas-
ingDA leads to an increase in the duration of inter-
vals with high DA, but does not affect the mean
DA during the session.

The comparison of our results with recent works of
other authors allows us to suppose that in the absence
of biological feedback the features of the brain activ-
ity during a prolonged mental task are affected by two
main neural mechanisms. The first one, known as men-
tal fatigue, consists in the brain inability to complete
the mental task which requires a high level of sustained
attention in the absence of discernible cognitive failure
[53]. According to Mizuno et al. [54], mental fatigue
affects brain activity of healthy subjects during accom-
plishing fatigue-inducingmental tasks, including a pro-
longed visual stimulus. The effect of mental fatigue
was also demonstrated in terms of behavioral perfor-
mances. In particular,Bonnefond et al. [55] showed that
the behavioral performance in the accuracy and speed
declines in time. Furthermore, Boksem et al. [56] found
that when the duration of the experiment is increased,
the number of missed and false alarms also increases,
while the response speed decreases. In addition, Kato
et al. [57] observed a significant increase in the reaction
time and the number of errors, when the time spent for
task evaluation enlarges.

Alongwith these behavioral signs, the effect ofmen-
tal fatigue on visual attention can be estimated based on
the EEG structure. For instance, Faber et al. [58] con-
cluded that visual attention is affected bymental fatigue
in the form of a decrease in the ability to suppress irrel-
evant information. The authors demonstrated fatigue-
related signs in electrical brain activity in parieto-
occipital areas by analyzing event-related potentials
(ERP). Guo et al. [59] also used ERP for the analy-
sis of the effect of mental fatigue on sustained visual
attention under a long-standing monotonous task.

In the particular case of visual perception, when
incoming visual information stimulates visual and
attention centers across the neural network in the
parieto-occipital area, the time–frequency EEG struc-
ture exhibits a stimulus-related increase in β-activity
(15–30 Hz) [40] accompanied by a decrease in α-
activity (8–12Hz) across parietal and occipital regions.
When β-rhythm increases and α-rhythm simulta-
neously decreases, we deal with a percept-related
response of the parieto-occipital brain network. The
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Fig. 8 Typical fragments of
I (t) dependency during a
first (without feedback) and
b second (with feedback)
experimental sessions. The
solid lines (above zero)
show the traces of high
brain response, while the
transparent lines (below
zero) show the refractory
intervals of neural ensemble
activity -100
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amplitude of this response or the degree of attention
(DA) in every time moment is measured using Eq. (5).
According to Klimesch [60] and more recent work of
Roy et al. [52], mental fatigue produces an increase
in the energy at low frequencies (< 12 Hz), including
α-rhythm, accompanied by a decrease in the energy
at high frequencies (> 12 Hz), including β-rhythm.
A decrease in the β-rhythm power density in parietal
area during fatigue-inducing mental task sessions was
also reported by Tanaka et al. [61] and Zhao et al. [62].
These observations physiologically justify that mental
fatigue reduces human attention, i.e., DA decreases.
This can be estimated by our algorithm through Eqs.
(3)–(5) based on the α- and β-wave energies.

The origin of the above effect may lie in the brain
ability to change a structure of the functional neural
network under increasing cognitive demand. This fol-
lows from the global workspace theory (GWT), which
implies that conscious perception requires coherent
activity of multiple distributed brain regions [63].
According to GWT, the tasks which can effortlessly
be performed activate a limited number of neurons in
the brain network. Conversely, cognitive tasks which
require sustained attention engage a set of long-
distance connections coordinating the activity of mul-

tiple distributed brain regions [64]. In the recent paper
of Finc et al. [65], the authors studied changes in the
whole-brain functional network under increasing cog-
nitive demands of working memory, based on the net-
work approach. They demonstrated that an increase in
cognitive demand results in a decrease in modularity of
the whole-brain neural network. This in turn implies a
less segregated andmore integrated network connectiv-
ity patterns. With these results in mind, Guo et al. [66]
showed that such brain network reorganization can also
be induced by a periodic visual stimulation. Having
analyzed the steady-state visual potential (SSVEP), the
authors demonstrated that the main sources of SSVEP
are located in parieto-occipital and frontal areas and
connections between these areas increase during stim-
ulation. In our previous experiments on perception
and preliminary processing of visual stimulus, we also
observed increasing connectivity between neural struc-
tures in parietal and occipital areas [49]. Such increas-
ing connectivity was shown to be positively related to
a change in the amplitude of the stimulus-related brain
response in parietal and occipital areas. According to
GWT [65], high cognitive demand due to a prolonged
monotonous visual task causes an increase in connec-
tivity between parietal and frontal areas, accompanied
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by a decrease in the coupling strength between neural
structures in parieto-occipital area. This in turn leads to
a decrease in the stimulus-related brain response ampli-
tude and hence in DA according to Eqs. (3)–(5).

Thus, one can suppose that when cognitive demand
is increased, the interplay between the processes of
mental fatigue and brain network reorganization forms
an oscillatory mode of the brain dynamics. The peri-
odical modulation of the brain activity level was ana-
lyzed by Fox et al. [67], who considered sponta-
neous fluctuations of the functional MRI blood oxygen
level-dependent signal. The authors demonstrated the
coexistence of two groups of diametrically opposed,
widely distributed brain networks on the basis of cor-
relation (and anticorrelation) between oscillations of
fMRI signals produced by them. The first group con-
sists of brain regions routinely exhibiting task-related
activations, while the second group includes regions
routinely exhibiting task-related deactivation. These
groups are known as task-positive and task-negative
regions, respectively.

According to Ref. [68], during the accomplish-
ing of attention-demanding cognitive tasks, the task-
positive region which includes a set of frontal and
parietal cortical regions routinely exhibits an increase
in activity, whereas the task-negative regions, includ-
ing posterior cingulate, medial and lateral parietal, and
medial prefrontal cortex, routinely exhibit a decrease
in activity [69,70]. When the attentional demand of the
task is increased, activity in task-positive regions fur-
ther increases, while activity in task-negative regions
decreases. With this in mind, one can suppose that the
oscillatory mode of DA (see Fig. 4) can be associated
with excitation of a task-positive response in parietal
cortical regions. At the same time, as was demonstrated
by Fox et al. [67], the period of these oscillations varied
from 60 to 100s during the resting state, while in our
study, the period of these oscillations varied up to 150s.
Such an increase can be caused by the enlargement of
the size of neural ensemble (this is also evidenced by
the activity increase in these regions). It can be fur-
ther supposed that in the case of biological feedback
the size of the neural ensemble in parietal area exhibits
a further increase in order to process visual informa-
tion for a prolonged time. An increase in the neuronal
ensemble size leads to an increase in its excitation time,
which is reflected in an increase in the period of DA
oscillations. At the same time, an increase in the time
intervals with high DA is accompanied by increased

alternating intervals with low DA, which correspond
to the refractory periods of neural ensemble activity.
As a result, the mean DA does not further increase.

Such brain response to the feedback control repre-
sents a scenario bywhich the brain activity follows dur-
ing a prolonged visual perception task in order to resist
mental fatigue. It includes the distribution of the neural
activity among different brain areas and the creation
of long-distance connections coordinating the activity
of multiple distributed area regions when the cogni-
tive demand is increased, as follows from the global
workspace theory.

Having considered brain dynamics under the effect
of increasing mental workload, one has to take into
account the limited brain resource. According to the
review ofMarois and Ivanoff [71], there are threemajor
bottleneckswhich can cause the limitation of brain abil-
ity to consciously perceive and process information.
They are attentional blinks, visual short-term memory,
and psychological refractory period phenomena. It is
supposed that the capacity limit of a visual short-term
memory storage is localized in the posterior parietal
and occipital cortex and affects a structure of electri-
cal neural activity [72] and FMR signals [73] recorded
in this brain area. According to ERP [74] and FMRI
[75] analyses, the neural locus of the capacity-limited
process underlying the attentional blink is in the fronto-
parietal network.

In this context, biological feedback is aimed to
increase the capacity limit of information processing
in the brain. At the same time, according to our results,
the capacity enhancement cannot be achieved during a
single feedback control session. In order to increase the
stimulus-related brain response amplitude, the func-
tional structure of brain network must be adjusted to
process more complex workload. According to the
recent review of Taya et al. [76], this can be done
using cognitive training which demonstrates a high
efficiency in behavioral performances [77,78]. At the
same time, besides the improving behavioral perfor-
mance, the authors of many papers highlight that cog-
nitive training also affects the brain activation [79].
In particular, it was shown that the training cannot
increase the brain activity very fast; the result becomes
notable in the areas related to mental task evaluation
only after several weeks of training [80]. In addition
to the training-induced changes in the brain activity,
morphological changes can also be induced by cogni-
tive training in the adult brain [81]. Several scientists
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examined the effects of training on the brain structure.
They found that modulations of neural structures and
brain functions can occur for a relatively short period of
time. Even seven-day training already induces changes
in gray matter density [82]. However, six-week train-
ing induces changes in both white and the gray matters
[83]. Moreover, training was shown to increase struc-
tural integrity of the brain areas [84].

To summarize, the limited capacity of information
processing in the brain is attributed to peculiarities of
neural dynamics and biological properties. This leads
to mental fatigue which affects neural dynamics during
accomplishing a monotonous task for a long time with-
out a break. In order to address this increasing work-
load, the brain starts to reconfigure a functional net-
work structure and reconstruct different neuronal sub-
networks located in remote brain regions, which start to
interact more intensively. This process is accompanied
by the formation of task-positive and task-negative neu-
ronal structures. The interaction between these struc-
tures causes an oscillatory mode of neuronal activity.
The increasing cognitive demand results in an increase
in the amplitude and the period of these oscillations
due to the enlarging size of neural ensembles involved
in information processing. In this paradigm, the brain
ability in increasing intensity of the task-related neural
response is limited by the size of neural ensemble in a
particular brain area. According to this, the application
of biological feedback to enhance brain ability does
not result in an increase in the neural response ampli-
tude within a single session. At the same time, such
an increase is achieved after several training sessions,
since the training causes morphological changes, e.g.,
increasing gray matter volume and structural integrity
in task-related brain areas.

6 Conclusion

Human brain is a complex system which demonstrates
a variety of different nonlinear phenomena, including
different types of synchronous regimes [85], intermit-
tency [86], and extreme events [87,88]. Along with
nonlinear phenomena arising inside the brain, recent
studies report on the regimes of brain-to-brain synchro-
nization [89]. In all these applications, the feedback
plays an important role in brain dynamics. The feed-
back is required for the development of brain–computer
interfaces, and on the other hand, the feedback brain

control is of great interest for fundamental research
and different applications.

In this paper, we have described new nonlinear phe-
nomena in the neural brain network subjected to feed-
back control. In particular, we analyzed the effect of
feedback on neural dynamics in the parieto-occipital
human cortex during perceptual processes. First, we
implemented a new algorithm for estimation of the
degree of visual attention in real time based on the
methods of time–frequency and statistical signal analy-
ses. Having compared the dynamics in the groups with
feedback andwithout feedback, we found that the feed-
back led to an increase in time intervals during which
the subject maintained a high level of sustained atten-
tion (100 ± 20 s without feedback versus 150 ± 40 s
with feedback). At the same time, the degree of atten-
tion during these time intervals was 27% lower in the
group with feedback than in the group without feed-
back. The obtained results evidence that the brain cog-
nitive resource is limited, and therefore, when high per-
formance is required for a long time, it switches to a
“safe-mode” regime.

We believe that the results of this work can be useful
for the development of brain–computer interfaces to
control human mental processes.
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