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INTRODUCTION

Chaotic synchronization of nonlinear dynamic sys�
tems is a universal phenomenon that is important for
fundamental and practical applications [1–3]. The syn�
chronization can be observed in radio physical, physi�
cal, physiological, biological, chemical, social, and sev�
eral other systems. Multiple types of the synchronous
behavior of chaotic oscillators are being analyzed. The
regime of generalized chaotic synchronization (GCS) is
one of the most interesting regimes [4].

It is commonly accepted that the regime of gener�
alized synchronization is introduced for a system of
two unidirectionally coupled chaotic oscillators or dis�
crete mappings. This means that a functional relation
is established between the states of such systems after
the transient process [4]. The functional relation can
be rather complicated, and a procedure that makes it
possible to find such a relation can be nontrivial. Based
on the type (smooth or fractal) of the functional rela�
tion, strong or weak generalized synchronization can
be analyzed [5]. The strong synchronization corre�
sponds to the smooth dependence of the coordinates
of the drive and response systems whereas the fractal
dependence is observed for the weak synchronization.
In the latter case, two different dynamic systems may
serve as interacting oscillators (including systems with
different dimensions of phase space) and the method
of auxiliary system [6] is employed for diagnostics of
the synchronous regime.

Note that the determination of the functional rela�
tion in the GCS regime can be rigorously demon�

strated for two unidirectionally coupled oscillators
with continuous time [7]. In the case of the mutual
coupling, the corresponding analysis is inapplicable,
the functional dependence of the state vectors of the
systems is not proven, and the very existence of such a
dependence is questionable. Even a more complicated
scenario corresponds to the systems with discrete
time. Invertible mappings are related to flow systems
with the aid of the Poincare cross section [8]. There�
fore, the proof of existence of the functional relation
for state vectors of interacting systems can be extended
only to unidirectionally coupled invertible mappings.
The existence of such a dependence is questionable for
irreversible mappings and mappings with mutual cou�
pling. Nevertheless, the GCS regime is unfoundedly
interpreted as the presence of functional relation.

The method of auxiliary system is supplemented
with the method of nearest neighbors [4, 9] and the
method of calculation of the spectrum of Lyapunov
exponents [10] in the diagnostics of the GCS regime.
Both methods can be used to analyze the GCS in the
systems with mutual coupling [11]. However, the
diagnostics of the GCS in such systems with the aid
of the method of auxiliary system leads to incorrect
results [12].

In this work, we reconsider and specify the existing
concept of the GCS. We show that the states of inter�
acting systems in the GCS regime in both flow systems
and discrete mappings must be considered as the states
that are interrelated using a functional rather than a
functional relation.
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1. THEORY OF GENERALIZED 
CHAOTIC SYNCHRONIZATION

To demonstrate that the GCS concept must be
reconsidered and specified, we analyze the dynamics of
two unidirectionally coupled flow systems and discrete
mappings. 

The evolution of states of interacting flow systems is
determined using the system of equations

(1)

where  and  are state vectors of drive
and response systems, respectively; H and G are evo�
lution operators that determine the vector fields of the
systems under study;  and  are vectors of parame�
ters; function P is responsible for the unidirectional
coupling of the systems; and parameter σ character�
izes the coupling strength.

For mappings, such evolution of the state vectors of
drive  and response  systems is represented as

(2)

Without loss of generality, we assume that interacting
systems  and  have identical dimensions m.

As was mentioned, the GCS regime for the system
with unidirectional coupling corresponds to the exist�
ence of a functional relation of the states of interacting
systems. For unidirectionally coupled flow systems
[4, 5], such a relation is given by

(3)

For discrete mappings, the relation is written as

(4)

Based on the existence of the functional relation of
interaction systems (expressions (3) and (4)), we con�
clude that the nearest neighbors in the GCS regime
must obey a linearized relationship that can be derived
from expression (3) or (4) provided that functional
relation  is continuously differentiable.

We choose an arbitrary reference point  in the
drive system (  for flows and  for
mappings). Point   in the response

system corresponds to this point.
1
 Let 

 be a point in the drive system that is close to
reference point  such that  Then,

  is the corresponding point in the
response system. Vectors of deviation of a phase point
from reference point  in the drive system and refer�
ence point  in the response system are written as

1 Due to the fact that flow systems and discrete mappings are
interrelated, we consider only flow systems and present analo�
gous quantities and relationships for discrete mappings in square
brackets.
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 and , respectively. With
allowance for expressions (3) and (4), we obtain the
following formulas for the GCS regime:

(5)

Here,  is the Jacobian of  that is calculated at
point  For a finite�dimensional dynamic system
with dimension of phase space m, the Jacobian is an
m�dimensional square matrix.

In the GCS regime, the following relationship is
valid:

(6)

Hence, expression (5) can be represented as

(7)

where  is an m × m square matrix. If a func�
tional relation of the state vector exists, a similar
expression can be derived for mutually coupled cha�
otic oscillators. In this case, functional relation (3) can
be represented as  and relation (4) can
be represented as 

Thus, the above analysis shows that relationship (7)
is valid for two chaotic oscillators or discrete mappings
in the GCS regime if the differentiable functional rela�
tion exists. Evidently, different matrices  cor�
respond to different reference points  and the
explicit representation of matrix coefficients  is
unknown. However, the validity of expression (7) can
be verified for two interacting systems with dimension
of phase space m if M > m nearest neighbors  of a
fixed reference point  and the corresponding vectors

 and  are known.

Based on the preliminary analysis of the GCS
regime using the method of auxiliary system [6] or cal�
culations of the Lyapunov exponents [10], we can
choose m nearest neighbors (from M existing neigh�
bors) and expression (7) must be valid for each

Jth state  . In other words, m states yield  linear

equations with  unknown quantities (coefficients 
of matrix A). Then, the solution to this system of linear
equations makes it possible to determine coefficients

 of matrix A and the remaining (M – m) states can be
used to verify expression (7).

Obviously, a unique solution to the above system of
linear equations always exists provided that m states 
that are used for its construction are not linearly
dependent. For a relatively large set of states (M is sig�
nificantly greater than m), m linearly independent ref�
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consists of components of vectors  corresponding
to the states of drive system:

(8)

When relatively long time samples are available,
coefficients  of matrix A can always be determined
and, hence, the correctness of expression (7) can
always be verified. For this purpose, we must calculate
vectors

(9)

where  and compare them with vec�
tors  that are obtained from the time sample.

2. CORRECTION OF THE GCS DEFINITION

The previous section shows that state vectors of
interacting systems in the GCS regime must satisfy
expression (7) in the presence of the differentiable
functional relation. Expression (7) can be verified
using the calculation of perturbation vectors 
(expression (9)) and comparison of the calculated

results with vectors 
2
 However, the calculations of

particular systems show that the state vectors of inter�
acting systems do not coincide with the theoretically
calculated vectors and the corresponding difference is
relatively large. Such results indicate that expression (9)
is not satisfied for chaotic oscillators in the general
synchronization regime and, hence, expressions (3)
and (4) are also not satisfied or  is not a differentia�
ble functional relation.

Thus, the commonly accepted interpretation of the
GCS regime is not valid (or, at least, valid not always
and inconvenient) and, consequently, the definition of
the GCS regime must be reconsidered and specified.
Note also that the specific feature of the method of
nearest neighbors that lies in the fact that the method
does not allow exact determination of the threshold of
the GCS regime (as distinct from the method of auxil�
iary system and calculation of the largest conditional
Lyapunov exponent) is also related to the possible
invalidity of relationships (3) and (4).

However, a notion of GCS is not erroneous, since a
consistent theory of this phenomenon has been devel�
oped in many works. In particular, the synchronism of
coupled chaotic oscillators is proven with the aid of the

2 Evidently, we can directly compare state vectors  and
 rather than perturbation vectors  and 
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concept of synchronization of time scales [13, 14] and
easily demonstrated using the method of auxiliary sys�
tem [6] and calculation of the Lyapunov exponent
[10]; the effect is interpreted using the method of
modified system [15, 16]; etc. In addition, the com�
monly accepted definition of the GCS effect
(expressions (3) and (4)) is valid in several cases (see
below). Thus, we need an additional analysis and
correction rather than drastic modification of the
GCS definition.

The correction of the GCS definition lies in the
fact that state  of the response system at moment t
(state  at moment of discrete time n for mapping) is
determined by both state of drive system   at the
same moment and the prehistory of this state over time
interval τ (or discrete length of prehistory K). In other
words,  in expressions (3) and (4) must be consid�
ered as a functional for flow systems and a quantity
that depends on K previous states for discrete mapping
rather than a functional dependence.

In accordance with the GCS concept, drive system
  affects response system   in the syn�

chronous regime, so that the state of the latter is deter�
mined by the drive system. The convergence process is
determined by the largest conditional Lyapunov expo�

nent  Over time interval τ [K], the drive system
induces the transition of the response system to the
state that does not depend on the initial conditions
(the application of the method of auxiliary system is
based on this effect). For different image points in the
response and auxiliary systems, the distance between
the points decreases with time:

(10)

Thus, the state of the response system at moment t
[n] depends on the prehistory of the response system
over time interval whose duration is proportional to
the largest conditional Lyapunov index:

(11)

Evidently, expression (5), which is derived under
assumption that  is a differentiable function, is not
satisfied in this case. Thus, for the flow systems, we
have
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 With allowance for the aforesaid
facts, expression (7) for flow systems is represented as

(14)

For discrete mappings, we have

(15)

where  is the Jacobian of the transformation for
variable   Using to the smallness
of deviations   from reference trajectory 

, we derive the following expression in the frame�
work of the linear approximation:

(16)

where B(s) is unknown matrix with time�dependent
coefficients ( , so that we have

(17)

where Bk is unknown matrix that is similar to matrix

 for flow systems.
3 For the flow systems, we have
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For the discrete mappings, we have
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Consequently, the expression for the flow systems is
represented as
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where  is a square  matrix given by
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For the discrete mappings, we obtain
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where  is a similar matrix (m × m) represented as
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It is seen that expressions (20) and (22) are similar.
In addition, both expressions formally coincide with
expression (7) accurate to notation 
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  and  for mappings. This
circumstance, makes it possible to analyze the devel�
opment of the generalized synchronization using the
calculation of perturbation vectors  (see
Section 1) and comparison with vectors  However,
expression (7) is derived under the assumption of
closeness of vectors  and  whereas expressions (20)
and (22) are obtained under more rigorous conditions
for the smallness of the deviations of the phase trajec�
tories at time interval  

To quantitatively characterize the closeness of the
vectors to each other for each pair of vectors  and

, we consider quantity

(24)

and analyze its distribution.

For chaotic oscillations, phase trajectories in phase
space converge along certain directions and diverge
along different directions. Therefore, two points that
are close to each other in the phase space may have
substantially different prehistories if the correspond�
ing phase trajectories in the phase space of the
response system are different. Figure 1 illustrates such
a scenario. It is seen that the points that correspond to
trajectories 3 and 1 are close to each other but the pre�
histories are different, the condition for smallness of
deviation  at time interval τ (discrete length of pre�
history K) is not satisfied, and, hence, expressions (20)
and (22) are inapplicable for these points. At the same
time, trajectories 2 and 3 satisfy the closeness condi�
tion and we may assume that expressions (20) and (22)
are satisfied.
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Fig. 1. Phase tube and phase trajectories of the drive sys�
tem. Reference trajectories 3 and 1 are close to each other
at given moment t (shown in gray) but have different pre�
histories. Trajectories 2 and 3 satisfy the closeness condi�
tion and have similar prehistories. Trajectory 4 is not close
to trajectories 1–3 at moment t.
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To characterize the closeness of the phase trajecto�
ries, we use a notion of phase tube. With allowance for
the aforesaid facts, the expression that describes the
phase tube for the flow systems is written as

(25)

where ε is a small quantity. For the discrete mappings,
we have

(26)

Both expressions, take into account vectors whose
phase trajectories pass through the tube (e.g., trajec�
tory 2 in Fig. 1). Thus, the vectors whose phase trajec�
tories pass through the tube with length τ [K] must be
taken into account in the analysis of the GCS regime
in the system under study.

3. METHOD OF PHASE TUBES 
IN THE ANALYSIS OF THE SYSTEMS 

IN THE GENERALIZED 
SYNCHRONIZATION REGIME

To verify the correctness of the above analysis, we
study specific unidirectionally and mutually coupled
dynamic systems (with continuous and discrete time)
using the method of phase tubes. First, we consider
flow dynamic systems.

3.1. Flow Systems

In the first example, we consider two unidirection�
ally coupled Rössler oscillators:

(27)

where   are the Carte�
sian coordinates of the drive [response] oscillator;

    and 
are control parameters that are similar to the parame�
ters of [15, 17]; and σ is the coupling parameter. For
such control parameters, the generalized synchroniza�
tion regime that is determined using the method of
auxiliary function and calculation of the Lyapunov
exponent is reached at 

We use coupling parameter σ = 0.3 at which the
generalized synchronization regime is reached but the
synchronization with delay is not observed and study
system (27) using the method of phase tubes (Fig. 2).
We consider histograms of the distributions of the nor�
malized difference between vectors  and  (24)
(Figs. 2a and 2c) and vectors  and  (Figs. 2b and
2d) for the scenarios in which all of nearest neighbors
(Figs. 2a and 2b) and only points that pass through the
phase tube with length τ = 100 (Figs. 2c and 2d) are
used (in both cases, we have ε = 0.5). It is seen that sig�
nificantly different histograms are obtained. The his�
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vectors  and  substantially differ from each other
(Fig. 2b). For the points that pass through the tube,
calculated perturbation vectors  are in good agree�
ment with vectors  which is in agreement with con�
dition (20) and the assumption that the prehistory
must be taken into account. In particular, this means
that  must be considered as a functional for the flow
systems.
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differences is close to the uniform distribution. In the
second case, perturbation vectors  almost coincide
with vectors of the second system  and the histro�
gram represents a δ function. The results are in good
agreement with the results for unidirectionally cou�
pled Rössler oscillators. Therefore, the state vectors of
interacting objects in the mutually coupled flow sys�
tems are related to each other as a functional (as in the
systems with unidirectional coupling).

3.2. Systems with Discrete Time

In the first example, we consider two unidirection�
ally coupled logistic mappings

(29)

where   and  are
the control parameters of the drive and response sys�
tems, respectively; and σ is the coupling parameter
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[5, 20]. With regard to the 1D character of the map�
pings under study, the vectors from Section 2 must be
changed by scalars. Then, the theoretical and analyti�
cal regularities remain valid.

The threshold of the GCS regime is determined
using the calculation of the conditional Lyapunov
exponent for system (29) and specified with the aid of
the method of auxiliary system [6]. Figure 4a shows
the dependence of conditional Lyapunov exponent λ
on coupling parameter σ. It is seen that the condi�
tional Lyapunov exponent is negative for

 and  so that the GCS
regime is observed in these intervals. Note that the
GCS is close to the total (strong) synchronization at
relatively large parameter σ ≥ 0.265 whereas the
regime that is classified as the weak GCS corresponds
to . Evidently, the prehistory needs
not to be taken into account in the regime of strong
synchronization, since the states of interacting sys�
tems satisfy simple functional relation  [5].
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However, an additional analysis is needed for the weak
synchronization at σ ∈ [0.12; 0.18].

Without loss of generality, we choose coupling param�
eter σ = 0.14, which corresponds to the minimum nega�
tive conditional Lyapunov exponent (the arrow in
Fig. 4a). For accuracy ε = 0.01 in expression (26), we
analyze the effect of prehistory length K on quantity

 and distribution of normalized difference (24). In
this case, we randomly choose reference point .
When expression (22) is satisfied, the distribution of
normalized differences  represents a δ function as in
the case of flow systems.

Figures 4b, 4d, and 4f present the histograms of
normalized differences  for different prehistory
lengths K. Figures 4c, 4e, and 4g show planes (x, y)
that characterize the states of drive and response sys�
tems for the above values of the control parameters. It

Jzδ

Nx

JΔ

JΔ

is seen that the dependence of the coordinates of the
reference system on the coordinates of the drive sys�
tem exhibits fractal (nonsmooth) character, which
proves the assumption on the weakness of the GCS
regime. In each figure, we also present points 
that satisfy condition (26) for the given prehistory
length. Figures 4b and 4c illustrate the scenario in
which all of nearest neighbors are taken into account
(the prehistory is disregarded and K = 0). The scenario
corresponds to the conventional concept of the GCS.
In this case, normalized difference  is almost uni�
formly distributed over interval [0; 1] (Fig. 4b) and the
points in the phase space of the response system are
also randomly distributed in a wide range of variable y
(Fig. 4c). The results show that Eq. (9) is not satisfied
in this case.

An increase in the prehistory length leads to the
transformation of the distribution of normalized dif�
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ferences. For example, the distribution at K = 10
exhibits several developed peaks that emerge due to
the nonuniformity of chaotic attractor (Fig. 4d).
However, in this case, points  in the phase space of
the response system are still distributed in a wide range
of variable y (Fig. 4e). Figures 4f and 4g present similar
distributions for the optimal prehistory length K = 28.
In this case, the distribution of normalized differences
represents a δ function (Fig. 4f). States of the system

 that satisfy condition (22) are concentrated in
the small neighborhood of reference point 
(Fig. 4g). The fractal character vanishes, and the
relation of the states of the drive and response sys�
tems becomes smooth as in the case of strong syn�
chronization.

In general, the prehistory must be taken into
account in the correct analysis of the state vectors of
two unidirectionally coupled logistic mappings, so
that the results become similar to those obtained for
the system with continuous time.

In the second example, we consider two mutually
coupled Henon mappings

(30)

where   are the state vectors of
the first [second] system;  = ax1(1 – x1) + x2

is the nonlinear function;   and
b = 0.3 are the control parameters; and σ is the cou�
pling parameter [10, 21]. For these control parame�
ters, the generalized synchronization that is deter�
mined using the moment at which one of two
Lyapunov exponents becomes negative [11, 12]
emerges at 

Then, we fix coupling parameter σ = 0.2 and per�
form the study that is similar to the above study of sys�
tem (30). The weak GCS is observed in the system
under study at σ = 2. As in the previous case, we char�
acterize the closeness of vectors  and  using nor�
malized differences (24) and the analysis of the posi�

tions of vectors  and  on the  plane. Figure 5
shows the distributions of normalized differences 
and vectors  and  for two different scenarios. In
the first scenario (Figs. 5a and 5b), we employ all of
nearest neighbors (the prehistory is disregarded and
K = 0). In the second scenario (Figs. 5c and 5d), we
take into account the prehistory with length K = 40. In
both cases, we use ε = 0.01 in expression (26). It is seen
that normalized difference  in the first scenario is
almost uniformly distributed over unit interval (as in
the case of the above logistic mappings) and vectors 
and  significantly differ from each other, which indi�
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cates the absence of a smooth functional relation of
the states of interacting Henon mappings. However, in
the second scenario with the prehistory taken into
account, the distribution of differences  represents
a δ function and calculated vectors  are in good
agreement with vectors of the second system  This
circumstance indicates the correctness of the theoret�
ical analysis of Section 2.

Thus we conclude that the prehistory of mappings
must be taken into account in the analysis of the rela�
tion of state vectors in the interrelated 2D mappings.

4. STRONG AND WEAK GENERALIZED 
SYNCHRONIZATION

Finally, we discuss the commonly accepted con�
cept of strong and weak GCS (see, for example, [5]
and Section 3.2). As was mentioned in the Introduc�
tion, the conventional approach involves the classifi�
cation of the generalized synchronization (strong or
weak) based on the properties of the functional state
that is established between the interacting systems. At
a relatively low coupling strength of the systems, func�
tional relation F is fractal and, hence, the weak syn�

chronization takes place.
4
 If the coupling strength is

relatively high, the functional relation is smooth and
we obtain the total synchronization or synchroniza�
tion with delay, which are classified as the strong mod�
ifications of the generalized synchronization. The
above statements [14] are based on the calculation of
the correlation dimension (and the remaining charac�
teristics) of attractors in phase space  (D and R
are phase spaces of the drive and response oscillators,

respectively).
5

Indeed, the analysis of the attractor of two coupled
logistic mappings in space  (see, for example,
Fig. 4c) shows the fractal properties. At the same time,
the observed fractality is an artifact that is related to
the assumption on the existence of simple functional
relation (4) of the states of interacting systems with dis�
regard of the prehistory. To take into account the prehis�
tory in phase space , we must consider only vec�
tors  that satisfy condition (26) (condition (25) for
flow systems) (Fig. 4g). It is seen that all of states

 are concentrated in a small neighborhood of
reference point  the fractality vanishes, and
relation F of the states of interacting systems is
smooth. A similar conclusion can be drawn for not
only logistic mappings (29) but also alternative flow
systems and discrete mappings.

4 As was mentioned, this statement is valid for unidirectionally
coupled flow systems and unidirectional invertible mappings.

5 It is commonly accepted that the dimension of strange attractor
for fractal mapping F in total phase space  is greater than
the dimension of attractor of the drive system in space D
whereas the dimensions must coincide for smooth mapping F.
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Thus, we must employ the specified concept of the
strong and weak GCS. The specification lies in the fact
that state   of the second system depends on
both state of first system   at the same time
moment and the prehistory of the state with duration τ
[K]. In other words, relationships (12) [(13)] are satis�
fied for the states of interacting systems in the weak�
synchronization regime. An increase in the coupling
parameter leads to a decrease in the prehistory length,
which reaches zero at a certain coupling parameter, so
that the total synchronization is established. In this
case, the states of interacting systems are interrelated
with functional relations (3) [(4)] and the regime
under study corresponds to the strong generalized syn�
chronization.

( )y t
�

[ ]ny
�

( )x t
�

[ ]nx
�

Hence, the classification of the GCS (strong and
weak) is valid. However, the difference of the regimes
is not determined by the type of relation F (smooth or
fractal) of the states of interacting systems, since it is
smooth in both cases. In the strong�synchronization
regime functional relations (3) [(4)] are satisfied for
the states of interacting systems whereas the prehistory
must be taken into account in the weak�synchroniza�
tion regime.

CONCLUSIONS

We have studied the GCS in the unidirectionally
mutually coupled flow systems and discrete mappings.
It is demonstrated that the existing GCS concept must
be corrected and specified, since the states of the sys�

1.0

0.8

0.6

0.4

0.2

0.80.4 0.60.2 Δ

ρ(Δ)
(a)

1.0

0.8

0.6

0.4

0.2

0.80.4 0.60.2 Δ

ρ(Δ)
(c) 1

2

3

4

5

6

78

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1
2

3

4

5

6

7
8

y1

y1

y2

y2

(b)

(d)
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tems are generally interrelated as a functional. A
method for the analysis of the generalized synchroni�
zation in such systems is proposed. The results are
illustrated using examples of unidirectionally coupled
Rössler systems, mutually coupled oscillators based on
tunnel diode, unidirectionally coupled logistic map�
pings, and mutually coupled Henon mappings.

The results show that the classification of the gen�
eralized synchronization (weak and strong) needs to
be reconsidered and specified: the states of interacting
systems in the strong�synchronization regime satisfy a
functional relation whereas the prehistory must be
taken into account in the analysis of the weak synchro�
nization. For both strong and weak synchronization, a
smooth relation is satisfied for states of interacting sys�
tems and the fractality vanishes when the prehistory is
correctly taken into account.
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