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In this paper, we have studied the relationship between chaotic synchronization and microwave

signal amplification in coupled beam-plasma systems. We have considered a 1D particle-in-cell

numerical model of unidirectionally coupled beam-plasma oscillatory media being in the regime of

electron pattern formation. We have shown the significant gain of microwave oscillation power in

coupled beam-plasma media being in the different regimes of generation. The discovered effect

has a close connection with the chaotic synchronization phenomenon, so we have observed that

amplification appears after the onset of the complete time scale synchronization regime in the ana-

lyzed coupled spatially extended systems. We have also provided the numerical study of physical

processes in the chain of beam-plasma systems leading to the chaotic synchronization and the

amplification of microwave oscillations power, respectively. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.5001815]

Chaotic synchronization in spatially extended systems is

one of the most interesting and intricate phenomena in

nonlinear science. In this paper, we study the time scale

synchronization in unidirectionally coupled beam-plasma

systems being in the regime of electron pattern formation

and its relationship with the phenomenon of amplification

of chaotic signals. We show that the onset of a complete

time scale synchronization regime is accompanied by a

sharp increase of the amplification coefficient of the out-

put microwave power. Such an effect is observed both in

coupled chaotic systems and in the case of the influence of

chaotic signal on the spatially extended electronic system

demonstrating periodic dynamics.

I. INTRODUCTION

The study of chaotic synchronization in the coupled

beam-plasma systems is one of the most interesting and intri-

cate problems of modern physics of plasmas and microwave

vacuum electronics.1–12 The regimes of chaotic synchroniza-

tion in such systems have wide practical applications, for

example, for creation of a powerful array of microwave

oscillators, secure information transmission, and control of

chaos in the microwave devices.13–23

Several types of the synchronous behavior in coupled

chaotic beam-plasma systems are known at present. They are

the phase synchronization, complete synchronization, gener-

alized synchronization, and time scale synchroniza-

tion.7,10,11,24 One of the most important types from them is

the regime of time scale synchronization.

Time scale synchronization25 means the presence of the

synchronous dynamics in a certain range [s1; s2] of time

scales s introduced by means of the continuous wavelet

transform26,27

Wðs; t0Þ ¼
1ffiffi
s
p

ðþ1

�1

xðtÞw� t� t0

s

� �
dt; (1)

where x(t) is a time series under study, wðgÞ ¼
ð1=

ffiffiffi
p4
p
Þ exp ðjX0gÞ exp ð�g2=2Þ is the Morlet complex

mother wavelet function, and X0¼ 2p is the parameter of the

wavelet. The behavior of the system on different time scales

can be characterized by means of the wavelet spectrum

Wðs; t0Þ ¼ jWðs; t0Þj exp i/ðs; t0Þ; (2)

where jWðs; t0Þj and /(s,t0) are the amplitude and phase of

the wavelet spectrum, respectively. It is also necessary to

introduce into consideration the distribution of integral

energy by time scales

hEðsÞi ¼
ð
jWðs; t0Þjdt0: (3)

For two coupled dynamical systems with time series x1,2(t),
time scale synchronization takes place, if there is the range

of the synchronous time scales s 2 ½s1; s2� where the phase

locking condition

j/1ðs; tÞ � /2ðs; tÞj < 2p (4)

(where the phases /1,2 should be considered as monotoni-

cally increasing or monotonically decreasing,

�1 < /1;2 < þ1) is satisfied, and the part of the wavelet

spectrum energy fallen in this range is positive,24,28,29 i.e.,

Esnhr ¼
ðs2

s1

hEðsÞi ds > 0: (5)

Time scale synchronization is known to combine differ-

ent types of chaotic synchronization known at present. In

particular, the regimes of phase, generalized and complete
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synchronization can be considered as partial cases of the

time scale synchronization regime. The difference between

them is defined by a number of synchronous time scales that

can be characterized by a measure of time scale synchroniza-

tion. The measure of time scale synchronization first intro-

duced in Ref. 25 is defined as a part of energy of the wavelet

spectrum fallen in the synchronized time scales, i.e.

c1;2 ¼
1

E1;2

ðs2

s1

hE1;2ðsÞids; (6)

where

E1;2 ¼
ð1

0

hE1;2ðsÞids (7)

indices 1 and 2 correspond to the first and second interacting

systems, respectively. It is equal to zero (c1,2¼ 0) in the

regime of asynchronous dynamics of interacting systems and

it is equal to one (c1,2¼ 1) in the complete synchronization

regime. The intermediate values of the synchronization mea-

sure (0 < c1;2 < 1) correspond to the regimes of the phase or

generalized synchronization, at that the quantitative value of

c1,2 defines the degree of the phase or/and generalized syn-

chronization.24,25 In the case of unidirectional coupling, it is

necessary to calculate such a measure only for the response

system, i.e., c¼ c2.

It should be noted that the consideration of the system

dynamics on the different time scales allows detecting the

presence of the synchronous regime even in the case when

the classical methods of the synchronous regime detection

are misleading (for example, the detection of the phase syn-

chronization in systems with an ill-defined phase).28

Therefore, such a method allows analyzing the behavior of

complex spatially extended beam-plasma systems and defin-

ing the degree of their synchronization.

In the present paper, we analyze the effects taking place

in unidirectionally coupled beam-plasma systems at the time

scale synchronization regime onset. As would be shown

below, the onset of such a regime is accompanied by the

amplification of the output microwave power of signals gen-

erated by interacting systems.

II. SYSTEM UNDER STUDY

The system under study is represented by two unidirec-

tionally coupled low-voltage virtual cathode oscillators

(VCO) or vircators, the drive and response ones. Its sche-

matic representation is shown in Fig. 1.

A low-voltage vircator is a plane diode gap penetrated

by the electron beam with overcritical perveance

pcr¼ I/V3=2,30,31 where I is the beam current and V is the

applied potential. To form the overcritical perveance, the

output grid of the system is subjected to the retarding poten-

tial. The increase of the retarding potential results in the vir-

tual cathode formation.23,32,33

We have used a one-dimensional non-stationary model

of beam dynamics to simulate the nonlinear non-stationary

processes in the charged particle beam with a virtual cath-

ode.34 The simulation has been performed by the particle-in-

cell (PIC) method. Due to such an approach, the electron

beam has been considered as a set of large charged particles

injected in the interaction space in equal moments of time

with the constant velocity. For each particle, the non-

relativistic equations of motion have been solved. In dimen-

sionless form, such equations are given by31

d2xi

dt2
¼ �E xið Þ; (8)

where xi is the coordinate of the ith charged particle, E(xi) is

the space-charge field intensity in the coordinate xi, and

i¼ 1…N, N is a full number of large charged particles used

in numerical simulation.

The intensity and potential of the space charge electric

field have been defined in the uniform space grid with step

Dx. The potential of the space charge electric field in the

quasi-static approximation has been defined by the Poisson

equation which in one-dimensional approximation takes the

following form:

d2u
dx2
¼ a2q xð Þ; (9)

where a ¼ xp L/v0 is the Pierce parameter, where xp is a

plasma frequency, L is a length of the drift gap, and v0 is

undisturbed velocity of the electron beam. The boundary

condition for the Poisson equation is the requirement of the

presence of the retarding potential difference between the

grids of the system, i.e., uð0Þ ¼ 0; uð1Þ ¼ Du. The intensity

E of the space-charge field has been defined in such a case

by the numerical differentiation of the obtained values of the

potential E ¼ �@u=@x.

FIG. 1. The model of two unidirection-

ally coupled low-voltage vircators

(VCO). Here, blue rectangles represent

electron beam piercing the drift space

bounded by two grid electrodes in the

regime of VC formation and spatio-

temporal oscillations. Dashed lines

correspond to helical systems for the

microwave signal input and output.

Arrows reflect the direction of micro-

wave energy transition form drive sys-

tem to the response one.
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Calculation of the space charge density has been per-

formed by the particle-in-cell (PIC) method which consists

of the finding of the space charge by means of the bilinear

weighting of the particle charge on the grid.34 In the PIC

method, the space charge density in node j of the space grid

(xj¼ jDx) is given by

qðxjÞ ¼
1

n0

XN

i¼1

Hðxi � xjÞ; (10)

where N is the full number of charged particles, n0 is a

parameter of numerical scheme equal to the number of par-

ticles in cell being in non-perturbed state

HðxÞ ¼ 1� jxj=Dx; jxj < Dx;
0; jxj > Dx

�
(11)

is the piece-linear function defining the procedure of

“weighting” of the particle in the space grid with the step

Dx.

For output of the power of microwave oscillations of the

virtual cathode in the low-voltage vircator, the segment of

the helix slow-wave structure has been used. It has been sim-

ulated in the framework of the equivalent circuit method.35,36

Due to such an approach, the segment of the helix slow-

wave structure has been represented as a series of inductors

L[H/m] with shunt capacitors C[F/m] and described by the

telegraphy equations with additional terms describing the

excitation of electromagnetic waves by the beam

@I

@t
¼ � 1

L

@Uout

@x
;

@Uout

@t
¼ � 1

C

@I

@x
þ 1

C

@q

@t
; (12)

where Uout (t) is the output signal of the low-voltage vircator

(the integral value characterizing the system state). The

telegraphy equations have been solved numerically under the

assumption of the line conditioning on the left x¼ 0 and right

x¼ l ends of the segment of the helix slow-wave structure.

The distribution of the value of the beam charge q(t, x) excit-

ing electromagnetic waves in the transmission line has been

obtained by the solution of task by the particle-in-cell

method (see above). During the simulations, we have used

the following values of capacity and inductance: C¼ 104 and

L¼ 1.

To analyze time scale synchronization in two unidirec-

tionally coupled low-voltage vircators, we have performed

the numerical simulation of the dynamics of the drive

(marked by index “1”) and response (marked by index “2”)

generators in accordance with the Eqs. (8)–(12) mentioned

above. Parameters of the used 1D PIC numerical scheme for

simulation of each vircator have been selected in the follow-

ing way: number of spatial cells Nc¼ 400, number of par-

ticles per cell in the undisturbed state n0¼ 10, spatial step

Dx ¼ 1=Nc ¼ 2:5� 10�3, and time step Dt ¼ Dx=n0 ¼
2:5� 10�4. To improve the accuracy of calculations, we

have fulfilled the high pass filtration procedure related to the

electric field EðxÞ and space-charge density qðxÞ spatial dis-

tributions34 that gives it possible to accurately calculate the

derivative of the charge q in the telegraphy Eq. (12).

Mentioned parameters allow providing correct numerical

PIC simulation of regular and chaotic regimes of oscillations

in the considered systems.

The unidirectional coupling between drive and response

low-voltage vircators has been realized by means of the

microwave signal injection from the output of the drive gen-

erator to the input of the response one.37 The input of signal

in the response generator has been performed by means of

the modulation of beam penetrating into the diode gap by the

helical electrodynamic segment located between the electron

gun and input grid of the interaction space subjected to the

influence of the signal of the drive vircator. The attenuator

has been located in the communication channel between gen-

erators that allows controlling the power of microwave sig-

nal affecting the response generator. Such peculiarity has

been taken into account in the system under study by the

addition of supplementary equations describing the modulat-

ing helix to the equations of the response generator. These

equations are given by

@I2in

@t
¼ � 1

L

@U2in

@x
;
@U2in

@t
¼ � 1

C

@I2in

@x
(13)

with the boundary condition

U2in 0; tð Þ ¼
ffiffi
e
p

U1outð1; t� TÞ; (14)

where e is a coupling coefficient calculated as a ratio of the

power of drive signal to the output power of the response

generator and T¼ 1 is a time delay chosen arbitrary due to

the unidirectional type of coupling between interacting

systems.

The control parameters in the system of unidirectionally

coupled low-voltage vircators are the retarding potential dif-

ference Du1;2 between the grids of the drift gap, the Pierce

parameters a1,2, and coupling parameter e. The variation of

the retarding potential of the output grid and Pierce parame-

ters can result in the change of the dynamics of the electron

beam in the generator and variation of the virtual cathode

oscillation regime.

III. RESULTS

We have studied two different oscillation regimes of the

interacting drive and response systems: (i) both the drive and

response low-voltage vircators are in the regimes of chaotic

generation (a1 ¼ 0:9; Du1 ¼ 0:53; a2 ¼ 0:9; Du2 ¼ 0:55);

(ii) drive chaotic generator affects the response one demon-

strating the regime of periodic oscillations (a1 ¼ 0:9;
Du1 ¼ 0:53; a2 ¼ 0:9; Du2 ¼ 0:6). Fourier spectra, phase

portraits, and time series of the output radiation for these

regimes are shown in Figs. 2(a), 2(b), and 3(a), respectively.

Figure 2(a) corresponds to the drive low-voltage vircator

(a1 ¼ 0:9; Du1 ¼ 0:53) and Figs. 2(b) and 3(a) refer to the

response vircator in the chaotic (a2 ¼ 0:9; Du2 ¼ 0:55) and

periodic (a2 ¼ 0:9; Du2 ¼ 0:6) regimes. It is easy to observe

the presence of two well-pronounced spectral components f1
and f2 both in the regimes of chaotic and periodic generation.

To study the time scale synchronization regime onset in

unidirectionally coupled low-voltage vircators, we have

126701-3 Moskalenko et al. Chaos 27, 126701 (2017)



analyzed the output signals Uout1ðtÞ and Uout2ðtÞ from the

drive and response systems, respectively, for different values

of the coupling parameter strength. Figure 4(a) shows the

dependence of the measure of time scale synchronization c
(6) on the coupling parameter e for the case when both low-

voltage vircators are in the regimes of chaotic generation.

The behavior of the dependence is a typical one for coupled

chaotic systems, i.e., c ¼ 0 for the small values of the cou-

pling parameter when the asynchronous dynamics is

observed, then it starts increasing that corresponds to the

time scale synchronization regime onset reaching the value

of c ¼ 1 in the regime of complete synchronization. In the

same Figure, the dependence of the coefficient of amplifica-

tion P=P0 on the coupling parameter is shown. The coeffi-

cient of amplification has been calculated as a ratio of the

output power of the response generator for the fixed value of

the coupling parameter strength to the same power of the

response generator in the absence of coupling. It is clear that

it is equal to one in the absence of coupling. The increase of

the coupling strengths results, first of all, in the small varia-

tion of the coefficient with a further sharp increase of the

amplification. Comparing the behavior of the synchroniza-

tion measure and amplification coefficient [curves 1 and 2 in

Fig. 4(a)] allows us to conclude that there are two important

values of the coupling parameter: e1 corresponding to the

case when the most part of the time scales is the synchronous

one (c is close to 1) and the output power of the response

system starts increasing; e2 corresponding to the small

decrease of the measure of time scale synchronization and

attainment of the output power on the level of saturation.

Such a situation takes place for different values of the con-

trol parameters of the response generator and may be consid-

ered as a typical one. Figure 4(b) illustrates the dependencies

of the quantitative values of e1 and e2 on the retarding poten-

tial difference Du2 in the response system. It is clearly seen

that for all considered values of the control parameters there

are the fields of the power amplification and saturation. At

that, the amplification of the power takes place for the rela-

tively small values of the coupling strengths that allows

achieving the power amplification due to the coupling of

interacting generators.

To understand the physical mechanisms resulting in the

power amplification in the regime of time scale synchroniza-

tion, we have analyzed the transformation of the spectral

compound of the response system with the increase of the

coupling parameter strengths. Figures 2(b)–2(d) illustrate the

Fourier spectra and phase portraits of the response system

for different values of the coupling parameter (see caption).

It is clearly seen the presence of two main spectral compo-

nents f1 and f2 (marked by grey rectangulars) in the Fourier

spectra for all considered values of the coupling strength.

They correspond to the different types of the electron bunch-

ing in the beam. As it has been mentioned above, two main

spectral components are also presented in the Fourier spec-

trum of the drive system [Fig. 2(a)], at that, their intensities

are comparable with each other. On the contrary, in the

FIG. 2. (a) Fourier spectrum (left),

phase portrait (middle), and time series

(right) of the output radiation of the

drive chaotic generator (a1 ¼ 0:9;
Du1 ¼ 0:53). (b)–(d) Evolution of the

spectral compound, phase portraits,

and time series of the output radiation

of the response chaotic generator

(a2 ¼ 0:9; Du2 ¼ 0:55) with the cou-

pling parameter value increasing: (b)

e ¼ 0:0, (c) e ¼ 0:3, and (d) e ¼ 0:8.

The time delay s ¼ 0:375 for all con-

sidered cases.
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autonomous regime in the Fourier spectrum of the response

system the spectral component on the frequency f2 is more

pronounced in comparison with the frequency f1 [Fig. 2(b)].

The amplification of the output power with the coupling

parameter value increasing is related to the increase of oscil-

lations on the frequency f1 due to the enhancement of the

modulation bunching of the beam [Fig. 2(c)]. Saturation

takes place when the intensities of the spectral components

on the frequencies f1 and f2 become equal to each other [Fig.

2(d)]. It is also clearly seen the sequential deformation of the

phase portrait and time series of the output radiation of the

response system connected with the appearance and amplifi-

cation of low-frequency oscillations on the frequency f1. At

that, the type of the phase portrait of output oscillations

shown in Fig. 2(d) is a typical one for the field of saturation.

It should be noted that the coupling parameter value increas-

ing results, first of all, in the complication of the response

system dynamics that manifests itself in the growth of the

value of the highest Lyapunov exponent, with its further

decrease and transition in the field of the negative values.

Such transition is connected with the generalized synchroni-

zation regime onset in coupled beam-plasma systems.10,12

As it has been mentioned above, the amplification of the

response vircator output power is related to the rising of the

charged particle bunching efficiency while propagating

through the drift space. The same amplification mechanism

has been shown in the previous work38 where we have inves-

tigated theoretically and experimentally the dynamics of the

low-voltage vircator driven by the external harmonic signal.

It is well known that the velocity modulation of the electron

beam leads to the formation of electron bunches in the drift

space.39 In such devices as virtual cathode oscillators, where

the bunching of the electrons takes place under the interac-

tion of charged particles with each other, velocity modula-

tion of the electron beam at the frequencies close to the

beam eigenfrequencies causes the growth of the space-

charge density within the oscillating electron cloud in the

region of the virtual cathode. Figure 5 shows the evolution

of the beam space-charge density distribution qðxÞ in the

response vircator with the increase of the coupling parameter

e between coupled vircators. It is clearly seen that the cou-

pling parameter growth causes the increase of the space-

charge density distribution peak value. It is notable that the

space-charge density distribution peak value corresponding

to the saturation area (e � e2) is approximately two times

greater than one corresponding to the autonomous regime of

the response vircator.

Similar effects are observed in the case when the peri-

odic low-voltage vircator is subjected to the influence of the

chaotic signal (see Figs. 3 and 6, where synchronization

measure and coefficient of amplification as well as Fourier

spectra and phase portraits of output radiation for different

values of the coupling parameter have been shown). Indeed,

the chaotic signal from the drive generator results in the cha-

otization of the response system dynamics and even for very

small values of the coupling parameter the dynamics of the

FIG. 3. Evolution of the spectral com-

pound, phase portraits, and time series of

the output radiation of the response peri-

odic generator (a2 ¼ 0:9; Du2 ¼ 0:6
with the coupling parameter value

increasing: (a) e ¼ 0:0, (b) e ¼ 0:2, (c)

e ¼ 0:6, and (d) e ¼ 0:9. The time delay

s ¼ 0:375 for all considered cases.
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response low-voltage vircator become chaotic [Fig. 3(b)]. At

that, two main spectral components f1 and f2 are present in

the Fourier spectrum of the output radiation of the response

system as before. The spectral component on the frequency

f2 is more pronounced in comparison with the last one on the

frequency f1. But with further increase of the coupling

parameter the intensity of such spectral component grows up

that changes the dynamics of the response system consider-

ably [compare Figs. 3(c) and 3(d) with Fig. 3(b)].The

changes in the response system dynamics are accompanied

by the growth of the output power of the response system.

Figure 6 shows the dependence of the coefficient of amplifica-

tion P=P0 of the response low-voltage vircator on the cou-

pling parameter e (curve 1). It is clearly seen that as in the

case of unidirectionally coupled chaotic systems the sharp

increase of the amplification coefficient for intermediate val-

ues of the coupling parameter is observed. Such amplification

is also connected with the time scale synchronization regime

onset. In Fig. 6, the dependence of synchronization measure c
on the coupling parameter e is also shown (curve 2). It is easy

to see that the achievement by the c-value of the quantities

close to one appears sharply, and such moment coincides with

the increase of amplification coefficient. So, on the basis of

made consideration one can conclude that the regimes of time

scale synchronization and growth of the amplification coeffi-

cient in unidirectionally coupled low-voltage vircators are

closely connected with each other. Independent of the regime

realized in the response system the onset of complete time

scale synchronization regime is accompanied by the sharp

growth of the amplification coefficient that is connected with

the considerable changes in the spectral compound of the out-

put microwave radiation in the response generator.

IV. CONCLUSIONS

In conclusion, in the paper we have studied the relation-

ship between the time scale synchronization regime onset

and the amplification of the output microwave radiation

power in two unidirectionally coupled low-voltage vircators

simulated in the framework of the 1D particle-in-cell

method. We have shown that the complete time scale syn-

chronization regime onset is accompanied by the sharp

increase of the amplification coefficient calculated for the

response system. Such an effect does not depend on the char-

acteristics of the response system, i.e., it is observed both in

the case of the interaction between two chaotic vircators and

in the case of the influence of the chaotic signal to low-

voltage vircator being in the periodic regime. It worth noting

that in the early work38 the similar effect of the output

microwave power gain under the external signal action has

been confirmed experimentally. In that case, the external har-

monic signal has also been introduced to the response system

as the preliminary velocity modulation of the electron beam

at the entrance of the drift space.

FIG. 5. Spatial distributions of the beam space-charge density qðxÞ in the

response low-voltage vircator demonstrating chaotic dynamics for different

values of the coupling parameter e. This figure illustrates the beam dynamics

at the following control parameter values of coupled vircators:

a1 ¼ 0:9; Du1 ¼ 0:53; a2 ¼ 0:9; Du2 ¼ 0:55).

FIG. 6. Dependence of the coefficient of amplification P=P0 (curve 1, left

axis) and the measure of time scale synchronization c (curve 2, right axis)

on the coupling parameter e. The drive low-voltage vircator is in the regimes

of chaotic generation (a1 ¼ 0:9; Du1 ¼ 0:53), whereas the response one is

in the periodical regime (a2 ¼ 0:9; Du2 ¼ 0:6).

FIG. 4. (a) Dependence of the coefficient of amplification P=P0 (curve 1,

left axis) and the measure of time scale synchronization c (curve 2, right

axis) on the coupling parameter e. Both low-voltage vircators are in the

regimes of chaotic generation with the control parameters a1 ¼ 0:9; Du1 ¼
0:53 (drive generator) and a2 ¼ 0:9; Du2 ¼ 0:55 (response generator). (b)

Dependence of the quantitative values of e1 and e2 [marked by arrows in (a)]

on the control parameter of the response generator Du2 in the field of cha-

otic generation for the same values of the control parameters a1, Du1, and

a2. The fields of the power amplification and saturation are marked on the

ðe;Du2Þ-plane.
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