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Abstract—A promising task is the analysis of the different
rhythms of the brain cortical activity when performing cognitive
tasks. Studying this issue allows to advance in the development of
brain-computer interfaces. Some brain rhythms show certain dy-
namics during various cognitive activities. An important rhythm
associated with cognitive activity is the alpha rhythm. In this
paper, we study features of the dynamics of the alpha rhythm
during bistable visual processing of information of varying
complexity.

Index Terms—brain-computer interface, alpha-band activity,
visual classification task, time-frequency analysis

I. INTRODUCTION

Studying the electrical activity of the brain is a very
promising task that allows to advance in the development of
brain-computer interfaces [1] . This activity consists of various
neural rhythms, such as δ (1-5 Hz), θ (5-8 Hz), α (8-12 Hz),
β (15-30 Hz) and γ (50-100 Hz). The activity of individual
rhythms is manifested during various neurophysiological pro-
cesses. Thus, alpha and beta rhythms play a significant role
in processing visual information [2], [3]. Some studies also
show that different rhythms and areas of the brain interact
functionally when solving cognitive tasks [4]–[6].

Understanding the neurophysiological mechanisms of cog-
nitive processes in the brain can significantly advance the
development of passive neurointerfaces that monitor a person’s
cognitive state in real time [7].

In this paper, we study the dynamics of neural activity in
the brain during a cognitive process such as visual perception
of bistable images of varying complexity. For the study, we
chose the alpha frequency range, as it is associated with pro-
cessing visual information and changing the level of cognitive
attention [8]–[10].

II. MATERIALS AND METHODS

A. Subjects

Ten healthy subjects (5 men and 5 women) aged 26 to
35 years with normal or corrected-to-normal visual acuity
participated in the experiments. All of them gave informed
written consent before participating in the experiment. The
subjects were familiar with the experimental task, but did not
participate in the experiments at least in the last 6 months be-
fore this experiment. The experimental studies were conducted
in accordance with the Helsinki Declaration and approved by
the local ethics Commission of Innopolis University.

B. Task

The Necker cube was used as the visual stimuli [11], [12].
It represents itself a cube with transparent faces and visible
edges; an observer without any perception abnormalities sees
the Necker cube as a 3D-object due to the specific position
of the cube’s edges. Bistability in perception consists in
the interpretation of this 3D-object as to be either left- or
right-oriented depending on the constrast of different inner
edges of the cube. The contrast a ∈ [0, 1] of the three
middle lines centered in the left middle corner was used as
a control parameter. The values a = 1 and a = 0 correspond,
respectively, to 0 (black) and 255 (white) pixels luminance of
the middle lines. Therefore, we can define a contrast parameter
as a = y/255, where y is the brightness level of the middle
lines using the 8-bit gray-scale palette. In our experiment we
used Necker cube images with 8 different ambiguity levels
(see Fig. 1). Half of them, a ∈ {0.15, 0.25, 0.4, 0.45} were
left-oriented, while another half, a ∈ {0.55, 0.6, 0.75, 0.85}
were right-oriented. While for a = 0 and a = 1 the Necker
cubes orientation can easily be interpreted as a left or a right,
for a ∼ 0.5 the identification of the actual orientation becomes
more complex since we deal with a highly ambiguous image.

Each Necker cube image drawn by black and gray lines
was located at the center of the computer screen on a white978-1-7281-8763-1/20/$31.00 ©2020 IEEE
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Fig. 1. The set of visual stimuli (Necker cubes) with the different degree of
ambiguity a

background. A red dot drawn at the center of the Necker cube
was used to attract subject’s attention and prevent possible
perception hifts due to eye movements while observing the
image. The stimuli were demonstrated on a 24” BenQ LCD
monitor with a spatial resolution of 1920×1080 pixels and a 60
Hz refresh rate. The subjects were located at a distance of 70−
80 cm from the monitor with a visual angle of approximately
0.25 rad. The Necker cube size on the monitor was 14.2 cm.

C. Experimental protocol

The whole experiment lasted about 40 min for each par-
ticipant, including short EEG recordings at rest (∼ 4 min)
before and after the main part of the experiment. During
experimental sessions, cubes with predefined values a (from
the set illustrated in Fig. 1 were randomly represented 400
times (each cube with a certain ambiguity was represented
about 50 times) [13].

Participants were asked to press either the left or right
key to indicate the first impression of the orientation of each
cube. Since the sequential presentation of images previously
demonstrated cubes can affect the perception of subsequent,
the duration of the demonstration of the stimulus varied in
the range of 1 − 1.5 seconds. In addition, a random change
in parameter a also prevented the stabilization of perception.
Finally, to distract the observer’s attention and make the
perception of the next Necker cube independent of the previous
one, abstract images were shown for 3 − 5 seconds between
subsequent demonstrations of the cube images [12].

D. Recording

To register the EEG data, the cup adhesive Ag/AgCl elec-
trodes were placed on the scalp using the classical extended
ten–ten electrode system. The electrodes were installed with
“Tien–20” paste (Weaver and Company, Colorado, USA).
Electrical activity was recorded using 31 electrodes. Before
the experiment, we put the abrasive “NuPre” gel on the scalp
to increase its conductivity. After the electrodes were installed,
we monitored the impedance during the experiments, which
varied in the interval of 2–5 kΩ. The ground electrode N
was located above the forehead, and reference electrodes A1

and A2 were attached to the mastoids. For filtering the EEG
signals, we used a band-pass filter with cut-off points at 0.016
Hz (HP) and 70 Hz (LP), as well as a 50-Hz Notch filter.
For EEG and EOG signal amplification and analog-to-digital
conversion; the electroencephalograph “Encephalan–EEGR–
19/26” (“Medikom-MTD”, Taganrog, Russia).

E. EEG analysis

We analyzed the EEG signals power in α-frequency band
(8-12 Hz), using the continuous wavelet transformation. The
wavelet power spectrum En(f, t) = (Wn(f, t))2 was calcu-
lated for each EEG channel Xn(t) in the frequency range
f ∈ [1, 30] Hz. Here, Wn(f, t) is the complex-valued wavelet
coefficients calculated as

Wn(f, t) =
√
f

t+4/f∫
t−4/f

Xn(t)ψ∗(f, t)dt, (1)

where n = 1, ..., N is the EEG chanel number (N = 31 is the
total number of chanels used for the analysis) and “*” defines
the complex conjugation. The mother wavelet function ψ(f, t)
is the Morlet wavelet [14] which is defined as

ψ(f, t) =
√
fπ1/4ejω0f(t−t0)ef(t−t0)2/2, (2)

where ω0 = 2π is the wavelet parameter.
Then, for α-frequency band the wavelet amplitude Enα(t)

were calculated as

Enα(t) =
1

∆fα

∫
∆fα

En(f ′, t)df ′, (3)

where ∆fα = 8−12 Hz. The time-series of the wavelet power
(3) was calculated for the whole time of the experimental
session and then was split into the time segments τ ipre = 0.5 s
and τ ipost = 0.5 s, before and after the i-th visual stimulus
presentation.

〈Enα〉τ ipre,τ ipost
=

∫
τ ipre,τ

i
post

Enα(t′)dt′. (4)

For each stimulus ambiguity the difference between
〈Enα,β〉τ ipre and 〈Enα,β〉τ ipost

for the n-th EEG sensor was
analyzed statistically via the paired samples t-test based on
20 trials.

III. RESULTS

To investigate the effect of visual stimulus complexity, all
Necker cubes were divided into two groups (Fig. 2):
• Low ambiguity (LA) stimuli, including the Necker cube

images with a ∈ {0.15, 0.25, 0.75, 0.85}
• High ambiguity (HA) stimuli, including the Necker cube

images with a ∈ {0.4, 0.45, 0.55, 0.6}
Each group included 80 stimuli (20 per each ambiguity).

EEG features were analyzed and compared for LA and HA
stimuli for two moments of time: t1 = 0.25 s and t2 = 0.5 s
after the image presentation. Fig. 3 and Fig. 4 demonstrates
difference D between the number of EEG channels, where Eα
increases and those where Eα decreases for LA and HA trials
at both time moments. These diagrams show the distribution
of these values in the participant groups (median, 25th and
75th percentiles).
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Fig. 2. Visual stimuli divided into two groups according to their ambiguity

4

0

-4

d
i

e
re

n
c
e
 i

n
ff

c
h

a
n

n
e
l 

n
u

m
b

e
r,

D

LA HA

Fig. 3. The difference D between the number of channels where the EEG
amplitude in the alpha range (Eα) increases and the number of channels
where Eα decreases depending on the ambiguity of the stimuli (LA, HA) for
t1 time moment

Figure 3 shows that at t1 time for both groups of stimuli,
the proportion of channels with decreasing and increasing α-
rhythm energy is the same (median D ∼ 0).

However, at the t2 time the predominance of EEG channels
with decreasing energy in the α-frequency range is recorded
(median D = −1.75 and D = −2.5 for LA and HA stimuli
respectively) (Fig. 4).

Then, to compare the differences D between all the condi-
tions, we used repeated measures ANOVA. Image ambiguity
levels (HA and LA) and time points (t1, t2) were used
as within-subject factors. ANOVA with Greenhouse-Geisser
correction reveals significant difference of D between time
moments (F1,9 = 8.28, p = 0.018) while the difference
between HA and LA stimuli is insignificant (F1,9 = 0.25, p =
0.877). Wilcoxon signed rank test for the related samples did
not revealed significant change between LA and HA groups.

Therefore, after the visual stimulus is presented at time t2,
the number of EEG channels showing a decrease in activity
in the α-range increases relative to time t1. From this we can
conclude that the processing of visual information is associated
with a decrease in the activity of the α-rhythm.

We have constructed a topographical graph showing a
decrease in α-frequency band activity for the LA (b) and HA
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Fig. 4. The difference D between the number of channels where the EEG
amplitude in the alpha range (Eα) increases and the number of channels
where Eα decreases depending on the ambiguity of the stimuli (LA, HA) for
t2 time moment

(c) trials for the t2 time point (Fig. 5). A higher amplitude
means that more subjects show a decrease in energy in a given
area of the brain. The graph shows that the majority of subjects
have decreased activity in the alpha range in the parietal region
(P3, Pz, P4).
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Fig. 5. Topographical plot of the distribution of EEG channels reflecting Eα

decrease for all subjects for LA (a) and HA (b) stimuli

IV. CONCLUSION

In this paper we have considered the cortical activity
in the alpha-frequency band during the visual information
processing. It is shown that during the processing of both
simple and complex visual information, the alpha-band power
decreases in the parietal zone. Although our results do not
demonstrate the difference between the alpha-band activity for
the different complexity, they can be utilized as the biomarker
of the cognitive load. Thus, the results of this study can
be useful in the development of passive neurointerfaces that
monitor the cognitive state of a person during the visual task
accomplishment.
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