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ABSTRACT

Many living and artificial systems possess structural and dynamical properties of complex networks. One of the most exciting living networked
systems is the brain, in which synchronization is an essential mechanism of its normal functioning. On the other hand, excessive synchro-
nization in neural networks reflects undesired pathological activity, including various forms of epilepsy. In this context, network-theoretical
approach and dynamical modeling may uncover deep insight into the origins of synchronization-related brain disorders. However, many
models do not account for the resource consumption needed for the neural networks to synchronize. To fill this gap, we introduce a phe-
nomenological Kuramoto model evolving under the excitability resource constraints. We demonstrate that the interplay between increased
excitability and explosive synchronization induced by the hierarchical organization of the network forces the system to generate short-living
extreme synchronization events, which are well-known signs of epileptic brain activity. Finally, we establish that the network units occupying
the medium levels of hierarchy most strongly contribute to the birth of extreme events emphasizing the focal nature of their origin.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055156

Studying the synchronization in complex networks capturing the
properties of neuronal populations is crucial for understanding
the brain’s functioning in normal and pathological conditions.
The latter implies insights into the origins of excessive neuronal
synchronization, its prediction, and complete or partial suppres-
sion. To duly address these issues through dynamical modeling,
one should account for the fact that the neuronal ensembles syn-
chronize under limited resource constraints. With this aim, we
develop a network model evolving under the consumption of
excitability resources. Our proposed model exhibits the gener-
ation of extreme synchronization events at increased excitabil-
ity and topology-induced explosive transitions. We demon-
strate that the origination of extreme synchronization events
on the microscopic level is subserved by the medium-degree
units, which we refer to as “influential” nodes. Importantly, our
phenomenological model, despite its simplicity, reflects several

properties of epileptic seizures known from prior physiological
studies.

I. INTRODUCTION

Professor Vadim Anishchenko was one of the founding fathers
of such a scientific direction as nonlinear dynamics and the the-
ory of dynamic chaos both at Saratov University and throughout
Russia. For the first time in 1990, he published a pioneering book
Complex Oscillations in Simple Systems1 on dynamic chaos in Rus-
sia. In this book, he studied the chaos in a generator with inertial
nonlinearity, which was later called the Anishchenko–Astakhov
generator. Professor Anishchenko’s scientific interests in this area
were extensive—from problems of the theory of bifurcations to
the application of methods of nonlinear dynamics to the analysis
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of biological systems.2 In recent years, Vadim Anishchenko has
been actively involved in such a new and promising scientific field
as the theory of complex networks, including the study of subtle
effects, leading to the formation of chimera states. In this direc-
tion, Professor Anishchenko and his research team have made many
exciting studies. In particular, he, together with his bright colleague
Dr. Galina Strelkova, investigated chimeras in ensembles of chaotic
oscillators.3–5 In this paper, we consider an issue that closely coin-
cides with the last studies of Professor Vadim Anishchenko, namely,
the formation of synchronous states in a network of phase oscilla-
tors with certain modifications of the oscillator model. For all of us,
his students, colleagues, and friends, his death was a huge loss.

Many living and man-made systems possess structural and
dynamical properties of complex networks.6 A synchronization is an
essential mechanism underlying normal functioning of biological,7,8

physiological,9–11 social,12 electrical systems,13,14 etc. One of the most
fascinating living networked systems is the brain, in which synchro-
nization is vital in the coordination of distributed neural networks,
transmission, and encoding of information.15–17 On the other hand,
an excessive synchronization in neural networks reflects undesired
and hazardous aspects of collective behavior, including various
forms of epilepsy18–21 and Parkinson’s disease.22

In this context, network science and dynamical modeling offer
a rich methodological background to gain a deeper understanding
of the pathological aspects of collective behavior in neural net-
works. Biologically inspired network models have been proposed
and analyzed in the works by Medvedeva et al.23,24 Lehnertz and
co-workers have explored complex dynamics behind spatiotemporal
patterns25,26 and extreme behavior27,28 in excitable media. Recently,
Schöll and co-workers have addressed the impact of the network
topology on epileptic-seizure-related synchronization.29

Importantly, brain neural networks synchronize under lim-
ited resource consumption. The ability of neuronal ensembles to
produce a coherent response is determined by the excitability of
individual neurons, i.e., the capacity of ion channels.30 There is a
view that an increased neuronal excitability underlies a development
of the pathological brain states and is caused by a mutation of molec-
ular constituents of neural networks.31 Thus, the account of resource
consumption is vital in development of relevant models of neuronal
interactions.

Recently, several network models evolving under resource
constraints have been developed. Kroma-Wiley et al. have studied
synchronization in coupled Kuramoto oscillators, where resource
consumption and production are a function of their angular
velocity.32 They demonstrate that, along with trivial globally coher-
ent and incoherent states, the system exhibits partial synchroniza-
tion with either an oscillating order parameter or the coexistence
of multiple synchronized states. Also, Zhang and Strogatz have
designed a temporal network under a limited coupling budget.33 The
authors show that the proposed time-varying model synchronizes
more efficiently than optimal static networks.

In the current work, we propose a model of collective
dynamics under excitability resource constraints. Using an exten-
sive numerical simulation, we demonstrate that under the inter-
play between explosive synchronization (ES) and an increased
excitability resource, our model exhibits extreme behavior—an
important attribute of epileptic-seizure-related activity.34–37 We

suggest that ES would support an abrupt transition to coherence,
while a decay of resource would terminate a synchronous state.
Although many potential mechanisms lead to explosive transitions
in complex networks,38 we restrict our analysis to the ES induced by
the hierarchical network organization.39

The paper is organized as follows. Section II describes a pro-
posed Kuramoto model under the excitability resource constraints.
Section III reports the main findings of our study including macro-
scopic properties of extreme synchronization in the Kuramoto net-
work and its association with microscopic dynamics. Section IV
summarizes and discusses the obtained results in terms of the prior
neurophysiological studies.

II. MODEL

A conventional Kuramoto model comprises N interacting
phase oscillators as sketched in Fig. 1(a), and the dynamics of each
oscillator is governed by the following equation:

θ̇i = ωi + λ

N
∑

j=1

Aij sin(θj − θi). (1)

Here, θi and θ̇i are the phase and angular velocity of the ith oscillator,
i ∈ [1, N], ωi is its natural frequency, and λ is a coupling strength.
Connections of the network are defined by the adjacency matrix A,
in which Aij = 1 determines the presence of a link between the ith
and jth nodes, and the link is absent if Aij = 0. Local synchrony in
the neighborhood of the ith oscillator is estimated by the local order

parameter ri = 1/ki
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We consider phase oscillators having degree-dependent natu-
ral frequencies such that ωi = ki. This assumption is relevant for a
class of real networked systems, including power grids and, particu-
larly, neural networks, and is an essential condition for establishing
explosive transitions in several types of network topology.

A coupling strength λ being the only parameter controlling the
transition to coherence in Eq. (1) could be interpreted as excitability
of the ensemble. In many man-made and living networked sys-
tems, excitability could not be set constant and equal for all nodes.
Moreover, the excitability could not be maintained during pro-
longed periods of coherence due to a limitation of the system’s
resources. The proposed model accounts for the time-varying nature
of excitability of individual units by their connection to resource
baths λi through a diffusive coupling [Fig. 1(b)]. Here, the excitabil-
ity consumption is considered a function of the local order parame-
ter ri. A conventional Kuramoto model is, therefore, modified in the
following way:

θ̇i(t) = ωi + λi(t)

N
∑

j=1

Aij sin(θj(t) − θi(t)), (2)

λ̇i(t) = α(λi(t) − λ0) − βri(t). (3)

The first term in the right-hand side of Eq. (3) implies the
excitability recovery at a rate α, while the second term accounts for
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FIG. 1. Model under study. (a) Illustration of a conventional Kuramoto model.
Here, N oscillators (blue circles), whose state is defined by phase θi , i ∈ [1,N],
are interacting through the connections presented with blue solid lines. (b) Illustra-
tion of the proposed Kuramoto model under resource constraints, which implies
that each network’s unit is connected to an individual resource bath (red circles)
through a diffusive coupling (red dashed lines). The level of resource bath defines
the excitability λi of an individual phase oscillator.

the resource constraints at a rate β . λ0 is an unperturbed level of
excitability in the absence of resource constraints, i.e., at β = 0.0.
In other words, it defines the depth of an individual resource bath
and is set identical for all units. In the current study, we explore
the dynamics of a system governed by Eqs. (2) and (3) controlled
by λ0, while parameters α and β remain fixed. Here, slow resource
consumption at a rate β = 0.002 is contrasted by a fast resource
recovery at a rate α = 0.01.

III. RESULTS AND DISCUSSION

In the current study, the dynamics of Kuramoto networks are
explored through the extensive numerical simulations fully con-
ducted in Julia language using a DifferentialEquations

solver.40 Specifically, we integrate Eqs. (1)–(3) for N = 103 units
using the fourth-order Runge–Kutta (RK4) algorithm with adap-
tive time-stepping and keep the relative tolerance equal to 10−4. This

numerical algorithm is chosen due to the instability of a fixed time-
stepping RK4 method concerning the degree-dependent natural
frequencies of interacting oscillators.

To observe rare extreme events of synchronization, we sim-
ulate network dynamics on a large timescale, namely, t ∈ [0, 105]
time units. To address the impact of topology, we consider net-
works whose coupling architecture is given by the random small-
world (SW) and hierarchical scale-free (SF) graphs. The SW graphs
with low (p = 0.2) and high (p = 0.8) probability of rewiring and
mean degree 〈k〉 = 6 are generated via the Watts–Strogatz (WS)
algorithm.41 The SF graph is generated using the Barabási–Albert
(BA) algorithm, in which the network is grown by adding a new
vertex through attaching m = 3 new edges with n0 = 3 existing
vertices42 that keeps 〈k〉 ≈ 6 similarly to SW graphs. These graphs
are generated using the LightGraphs package for Julia.43 Ini-
tial phases θi are distributed homogeneously within the range
[0, 2π).

Below, we report and discuss the principal finding of our study
on extreme behavior in the proposed Kuramoto model. We explic-
itly focus our attention on the macroscopic network behavior and its
correlates with the microscopic dynamics of individual units.

A. Macroscopic behavior

First, we explore how the network topology impacts the
transition to coherence in the proposed Kuramoto model under
excitability resource constraints. We hypothesize that since resource
consumption is an internal force that subserves the maintenance of a
globally incoherent state, the explosive synchronization, in its turn,
should act in the opposite direction, i.e., forcing an abrupt transi-
tion to global synchrony. In this regard, we expect that the network
topology supporting a discontinuous transition to coherence should
establish extreme behavior accordingly.

With this aim, we analyze the macroscopic network dynamics
in three types of topology: strongly rewired SW graph (p = 0.8, close
to a random coupling), weakly rewired SW graph (p = 0.2, close
to regular non-local coupling), and hierarchical SF graph. Figure 2
reports the main findings. Indeed, in the absence of resource con-
straints, i.e., β = 0.0 and λi ≈ λ0, i ∈ [1, N], only the SF network
exhibits the first-order explosive transition to coherence follow-
ing Gómez-Gardenes et al.39 At the same time, both SW graphs
demonstrate a reversible continuous transition [Fig. 2(a)].

Account of a resource constraint at a rate of β = 0.002 is pre-
sented in Figs. 2(b) and 2(c). The plots in Fig. 2(b) depict the
evolution of the histogram P[R(t)] computed after the end of the
transient process, ttr = 103 time units. Figure 2(b) is complemented
by the histograms P[R(t)] plotted for specific values of λ0 in Fig. 2(c).
It is seen that in both SW networks under resource constraints, the
transition to coherence is smooth and does not show any sign of
extreme behavior as the corresponding histograms obey the Weibull
distribution throughout the considered range of λ0, p < 0.05 via a
χ 2-test [left and middle panels in Figs. 2(b) and 2(c)].

In contrast, the SF network under resource constraints exhibits
a stable globally incoherent state for low values of λ0 < 1.4275, and a
globally synchronized ensemble is established for λ0 > 1.4925. The
intriguing fact is that the SF network establishes an intermediate
state—a region of bistability with coexisting globally coherent and
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FIG. 2. The impact of network topology on transitions to coherence. The left and middle columns represent the results for strongly (p = 0.8) and weakly (p = 0.2) rewired
SW graph, and the right column depicts the results for the SF graph. (a) Forward (red) and backward (blue) transitions in a conventional Kuramoto model under increasing
and decreasing coupling strength λ. (b) Histogram P(R) vs the depth of excitability baths λ0 in the proposed Kuramoto model under resource constraints. (c) Histograms
P(R) in a semi-log scale for fixed values of λ0 (given in the legend to each plot).

inherent states as the system approaches a tipping point of forward
transition, λ0 ∈ [1.4275, 1.4925] [right panel in Fig. 2(b)]. Notably,
the histogram P[R(t)] obeys a Weibull distribution, p < 0.05 via a
χ 2-test, only for λ0 ≤ 1.4 [blue circles in Fig. 2(c), right panel]. Fur-
ther increase of λ0 contributes to a developing tail of the Weibull dis-
tribution as the system approaches the bistability area [orange circles
in the right panel of Fig. 2(c)]. Entering the area of bistability, the
histogram P[R(t)] demonstrates a dragon-king-like distribution44–46

characterized by a pronounced peaking exceedance at R ≈ 0.75
[green circles in the right panel of Fig. 2(c)]. This peak signs the
emergence of extreme events associated with rare and short-living
states of global synchronization. Under the growth of the resource
bath depth λ0, the distribution P[R(t)] becomes bimodal that indi-
cates developed bistability, where both coherent and incoherent
states are almost equally likely [red circles in the right panel of
Fig. 2(c)].
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Figure 3 reports the macroscopic dynamics of the pro-
posed Kuramoto model under the excitability resource constraints
depicted through the time-series of global order parameter R(t) and
corresponding phase trajectories on the (〈λ〉, R)-plane for the char-
acteristic values of λ0. At low λ0, the system exhibits a turbulent
drift in the neighborhood of a fixed point—a single stable attrac-
tor [Fig. 3(a)]. At the entrance of the bistability region, the sys-
tem demonstrates rare short-living extreme synchronization events

FIG. 3. Macroscopic behavior of the SF network under excitability resource con-
straints. The left and right columns present time dependencies of global order
parameter R(t) and corresponding phase trajectories in the state space (〈λ〉,R),
respectively, for different values of excitability bath depth λ0: (a) λ0 = 1.4000, (b)
λ0 = 1.4425, (c) λ0 = 1.4525, and (d) λ0 = 1.5000.

FIG. 4. Microscopic dynamics of the SF network under excitability resource con-
straints during a single extreme event. The plots are obtained for λ0 = 1.4425. (a)
Time dependence of the global order parameter R(t). (b) Space-time plot of the
instantaneous phase θi . (c) Distribution of the instantaneous angular velocity θ̇i
(black dots) and average frequency 〈θ̇i〉 (blue solid line). (d) Space-time plot of the
normalized local order parameter1ri . Vertical dashed lines indicate the transition
to global coherence. (e) Scatterplots show the normalized local order parameter
vs node’s degree 1ri(ki) (left) and node’s betweenness centrality 1ri(gi) (right)
at t = 0, respectively. Here, red circles indicate highly connected units (ki > 10),
and blue circles depict the remaining network nodes.

[Fig. 3(b)]. In this case, the two attractors—a stable fixed point (inco-
herence) and an unstable fixed point (global coherence)—coexist
and are reachable for the system. As the system has enough excitabil-
ity resources, it sharply leaves a stable fixed point basin and
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FIG. 5. Mechanism of the extreme synchronization event onset. Columns from left to right depict the network dynamics approaching extreme synchronization event onset at
λ0 = 1.4425. (a) Distributions of the network units on the plane (ri ,θ̇i ). Here, the circles are color-coded by the value of node’s degree ki in shades of red for highly connected
units and in shades of blue for the remaining ones. The horizontal black line indicates the main frequency � = 〈ωi〉 = 〈ki〉 ≈ 6. (b) Corresponding PDFs of the local order
parameter ri for highly connected nodes (top panels, red bars) and the remaining nodes (bottom panels, blue bars).

approaches the unstable fixed point. However, the network resource
is insufficient to stay in the neighborhood of an unstable fixed point;
therefore, the phase trajectory goes around the unstable attractor
and returns to a stable one. In the case of developed bistability, the
network continuously switches between the coherent and incoher-
ent states; i.e., a two-state intermittency is established [Fig. 3(c)].
The system has a sufficient amount of resources to enter the basin
of the attractor associated with the global network coherence and to
stay there for a finite time interval. However, the system occasion-
ally exits the attractor of global coherence under the sudden deficit of
resource and, thus, drifts between the coherent and incoherent states
consuming and recovering its resource. Finally, a large amount of
resource stored in the bath leads to trivial dynamics—the vanish-
ing of the fixed point determining the incoherent drift; therefore,
the system converges to the only possible state of global coherence
[Fig. 3(d)].

Since the main focus of the current study is devoted explicitly
to the extreme behavior in a proposed Kuramoto model, we proceed
with the analysis of microscopic dynamics underlying the transition
to synchronization events.

B. Microscopic dynamics

Figure 4 illustrates the dynamics of the Kuramoto oscillators’
ensemble under resource constraints during a single rare synchro-
nization event at λ0 = 1.4425. For convenience, the network units

are ordered in descending order of their degree in the space-time
plots. The time-series of global order parameter R(t) in the course
of this event is shown in Fig. 4(a). It is seen from Fig. 4(b) that the
majority of the network nodes undergoes an abrupt transition from
incoherent drift to coherence, remains phase-locked throughout the
event, and gradually leaves the synchronized cluster. As expected,
Fig. 4(c) shows that throughout an extreme event, the angular
velocities of the network units group near the main frequency,
which is the mean natural frequency or, equivalently, mean degree:
� = 〈ωi〉 = 〈ki〉 ≈ 6. To characterize better the involvement of the
individual units in a synchronization event, we introduce a normal-
ized local order parameter 1ri = ri − 〈ri〉pre, where 〈ri〉pre is a mean
local order parameter calculated over the time frame from −3 × 103

to −1 × 103 time units preceding the event. Figure 4(d) demon-
strates that the most interconnected nodes exhibit a greater increase
of the local order parameter, colored in dark purple, concerning a
preceding turbulent behavior.

Based on the latter, we conclude that the microscopic topolog-
ical properties of individual nodes determine their involvement and
impact on the transition to global coherence. To clarify this issue, we
consider the normalized local order parameter vs the units’ degree
ki and betweenness centrality gi at the beginning of synchronization
t = 0 presented in the left and right panels in Fig. 4(e), respectively.
One can see that the high degree/centrality units could be visually
dissociated from the bulk of low-degree/centrality nodes. Thus, we
separate the entire ensemble into two clusters based on their degree:
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FIG. 6. Synchronization of the influential and core network nodes. Plots (a) and
(b) show the time dependencies of local order parameter 〈r〉 and excitability 〈λ〉

averaged over the influential (red curves) and core network nodes (blue nodes).
Shadings of the corresponding color highlight a 95% confidence interval of the
mean local order parameter associated with turbulent behavior. A vertical dashed
line indicates the transition to global coherence. Vertical solid lines indicate the
approximate time moments of synchronization onset for influential (red) and core
nodes (blue).

cluster1 comprised the nodes with ki ≥ 10 [red dots in Fig. 4(e)]
and cluster2 is composed of the nodes with ki < 10 [blue dots in
Fig. 4(e)].

It is important to emphasize that the network units are well-
dissociated on the parameter planes formed by the quantifiers of
both their dynamics—normalized local order parameter 1ri—and
topology – nodes’ degree ki and centrality gi. It is also notable that
the node’s centrality is useful in unit discrimination as the node’s
degree. Taken together, these findings imply that the mechanisms
of transition to rare synchronization events are determined by the
dynamics of interaction between the hierarchically organized layers
of the SF network.

To understand the role of particular network nodes in the
birth of an extreme synchronization event, we explore the collec-
tive behavior of the network approaching a transition to coherence.
Figure 5(a) illustrates the snapshots of the node distribution on
(ri, θ̇i)-plane color-coded by the value of degree ki. The snapshots
are supplemented with the corresponding PDFs of the local order
parameter ri in both considered clusters [Fig. 5(b)]. In the turbulent
state, t = −300, the high degree nodes (cluster1) are characterized
by the low level of local coherence and lie far from the main fre-
quency of the ensemble. In contrast, the network’s dynamics are
governed by the peripheral low-degree units and their communi-
ties (cluster2) exhibiting high local synchronization. Thus, the main
frequency of the oscillations in the turbulent state is determined

by a large number of small locally coherent groups formed around
these units whose degree lies between 4 and 6. Moreover, due to
resource constraints, the coherence of these local ensembles is not
maintained permanently. These local populations alternately gain
and lose coherence being globally desynchronized with each other.
We conclude that the peripheral low-degree ensembles act as tur-
bulent active media in the vicinity of a critical point supporting a
rapid transition to global coherence. Due to their role in the network
dynamics and the population size, we refer them to as the “core”
nodes.

However, the transition to coherence is not induced by the
interaction of the “core” units. Alternatively, it starts when a suffi-
cient number of units from cluster1 becomes frequency-locked near
the main frequency θ̇i ≈ �. It is seen that the highest degree nodes
from cluster1 remain desynchronized due to a strong mismatch
between their natural frequencies and the main frequency � ≈ 6.
The most important contribution to the transition to coherence is
made by the nodes, whose degree is between 10 and 15, i.e., the nodes
occupying an intermediate position in the network hierarchy. Due to
a relative closeness of their natural frequencies and broad coverage
of peripheral units, these nodes have a significant impact on the net-
work’s dynamics. At a given value of excitability resource store λ0,
they establish local coherence within their neighborhood starting an
avalanche-like phase-locking of a large number of small peripheral
ensembles. Thus, the principal role of these oscillators is a coordina-
tion of the distributed local populations to achieve global coherence.
We refer to this group of network units as “influential” nodes.

Finally, to emphasize the functional distinction of the “core”
and “influential” units, we consider their dynamics near the tran-
sition point t = 0. Figure 6 shows the time-series of averaged local
order parameter 〈r〉 (a) and averaged excitability 〈λ〉 (b) for each
group of network nodes. We see that local coherence in the turbulent
state before the transition to coherence is higher in the “core”
ensemble than in “influential” units. It coincides with the previous
observations and implies the optimal network state from the view-
point of the resource demands. The synchronization onset starts
at t ≈ −250 as the influential units experience the growth of local
coherence and leave the turbulent state. Notably, at the same time,
the core nodes stay in their turbulent state and leave it later under
the impact of influential nodes at t ≈ −125. From now on, these
populations approach the global coherence together through a sharp
growth of local synchrony. At the same time, the averaged excitabil-
ity level 〈λ〉 in both groups slowly decreases during the onset of
an extreme event. Just like the local coherence, the decrease of an
excitability level starts earlier in “influential” units, indicating the
leading role of this population in the transition to synchronization.

IV. CONCLUSION

To summarize, in the current paper, we propose a self-
consistent network model establishing generation of extreme syn-
chronization events. Our model is based on the interaction of
paradigmatic Kuramoto phase oscillators under excitability resource
constraints. We have explicitly demonstrated that the extreme
behavior in such a model is possible due to the interplay between
resource consumption and explosive transitions. The latter provides
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a hysteresis area, i.e., a region, where the excitation of the coher-
ent and incoherent states is possible, along with the mechanism of
a jump-like switching between them. The opposition between the
avalanche-like explosive transition to coherence and resource con-
straints forcing the network to converge to incoherence gives birth
to the rare and short-living states of global synchrony. Importantly,
the transition to extreme synchronization events is forced mainly by
the units occupying medium levels in the network’s hierarchy, which
we refer to as the “influential” nodes.

Although our observations are limited to the explosive tran-
sitions induced by the structure and degree-dependent natural fre-
quencies of the interacting oscillators, we expect that the extreme
synchronization events should be excited under the other mecha-
nisms underlying the explosive transitions, i.e., introducing adaptive
coupling,47,48 multiplexing,49–52 frequency displacement,53 etc.

We also expect that the proposed phenomenological model is
of potential interest in understanding the complex dynamics of real-
world networked systems. Primarily, we assume that the presented
results could be relevant in the studies of brain diseases character-
ized by abnormal synchronization of neural ensembles such as vari-
ous forms of epilepsy.54 Many recent papers show that the formation
of epileptic events carries features of extreme behavior,34–37 which
has been shown for both different animal models of epilepsy35,36 and
human patients.37 Despite the relative simplicity, our model reflects
several properties of epileptic seizures, e.g., an abrupt increase of the
main frequency at the beginning of synchronization and its decrease
throughout the event (see, for example, Refs. 55 and 56), along with
the presence of focal nodes inducing the transition to coherence. We
believe that further studies aimed at improving the current model
and bringing its properties closer to the real neuronal ensembles
will contribute to the modeling and gaining deeper insight into the
dynamics behind abnormal epileptic activity.
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