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ABSTRACT

In this paper we numerically simulate a two-layer network of coupled Hodgkin-Huxley neurons for modulating a
processing visual perception by the human brain. We investigate the influence of the external stimulus amplitude
on the dynamics of second layer neurons. We discover coherent resonance phenomenon in the system: there is
an area of external stimulus amplitude when both SNR and characteristic correlation time are maximal. We also
analyze the influence of internal noise amplitude on the system dynamics.
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1. INTRODUCTION

Investigations of neuronal models subjected to different types of perturbations have received significant attention
in the last years.1–4 It is widely acknowledged that signal processing in neural systems takes place in a noisy
environment. Hence, it is of interest to understand the statistical properties of stochastic neuronal systems.
Investigation of the influence of noise on spike generation in the presence of some external forcing signals is
particular important, because noise plays a significant role in the detection, transmission and encoding of such
signals.

As all real systems, the neural systems are noisy. Noise can lead to increase or decrease of order in the dynam-
ical systems under noise.5–7 To be mentioned here are the effects of noise induced order in chaotic dynamics,8,9

synchronization by external noise,10,11 and stochastic resonance.3,12–14 Also, noise has been shown to play a
stabilizing role in ensembles of coupled oscillators and maps.15,16 Especially interesting is the phenomenon of
stochastic resonance, which appears when a nonlinear system is simultaneously driven by noise and a periodic
signal.17–20 At a certain noise amplitude the periodic response is maximal.

Coherence resonance is an important finding emerging in many fields of science, including complex neuronal
systems.17,21 The phenomenon of coherence resonance was first discussed in a simple autonomous system in
the vicinity of the saddlenode bifurcation.22,23 The nonuniform noise-induced limit cycle leads to a peak at a
definite frequency in the power spectrum. The signal-to-noise ratio (SNR) increases first to a maximum and
then decreases when the intensity of noise increases, showing the optimization of the coherent limit cycle to the
noise.

In this paper, we numerically simulate a two-layer network of coupled Hodgkin-Huxley neurons24 for modu-
lating a processing visual perception by the human brain.25–28 The first and the second layers of the network
consist of 5 and 50 neurons and represent visual area of the thalamus and visual cortex respectively. As a model
neuron, we chose the Hodgkin-Huxley neuron. We simulate visual stimulus by adding some external stimulus of
constant amplitude to the neurons in the first layer connected to the neurons in the second one unidirectionally.
All neurons in each layer are globally coupled to all other neurons inside the layer and each neuron has its
own zero mean white Gaussian noise. We investigate the influence of the external stimulus amplitude on the
dynamics of second layer neurons. We calculate power spectra of signal averaged over all neurons in the second
layer and then we calculate signal-to-noise ratio and characteristic correlation time. As a result we discover
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coherent resonance phenomenon in the system: there is an area of external stimulus amplitude when both SNR
and characteristic correlation time are maximal. It means that the network processes visual information better
for some values of external stimulus amplitude.

2. NUMERICAL MODEL

The system under study represents the networks of Nex = 5 and N = 50 Hodgkin-Huxley neurons (Fig. 1).
Inside each network all elements are connected to each other, and there is a probability p = 0.3 of making a
one-way connection between a neuron from the first network to a neuron from the second one. To all Nex neurons
from the first network we inject the external current Iex of constant amplitude simulating the visual stimulus.
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Figure 1. Research design. The external stimulus with amplitude A is applied to Nex = 5 neurons in the first network.
Each neuron in this network is connected to each neuron in the second network with a probability p = 0.3. From the
system we take signal Vi from all neurons in the second network and signal Vavr averaged aver all these neurons. Each
element has its own Gaussian noise.

The time evolution of the transmembrane potential of the HH neurons is given by:24

Cm
dVi
dt

= −gmaxNa m3
ihi(Vi − VNa)− gmaxK n4i (Vi − VK)−

− gmaxL (Vi − VL) + Iexi + Isyni

(1)

where Cm = 1µF/cm3 is the capacity of cell membrane, Iexi is an external bias current injected into a neuron in
the network, Vi is the membrane potential of i-th neuron, i = 1,...,N , gmaxNa = 120mS/cm2, gmaxK = 36mS/cm2

and gmaxL = 0.3mS/cm2 receptively denote the maximal sodium, potassium and leakage conductance when all
ion channels are open. VNa = 50mV , VK = −77mV and VL = −54.4mV are the reversal potentials for sodium,
potassium and leak channels respectively. m, n and h represent the mean ratios of the open gates of the specific
ion channels. n4 and m3h are the mean portions of the open potassium and sodium ion channels within a
membrane patch. The dynamics of gating variables (x = m,n, h) depending on rate functions αx(V ) and βx(V )
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are given:29

dxi
dt

= αxi
(Vi)(1− xi)− βxi

(Vi)xi + ξxi
(t), x = m,n, h (2)

ξx(t) in Eq.2 is independent zero mean Gaussian white noise sources whose autocorrelation functions are
given as below30

〈ξmi
(t)ξmi

(t′)〉 =
2αmi

βmi

NNa(αmi
+ βmi

)
δ(t− t′) (3)

〈ξhi
(t)ξhi

(t′)〉 =
2αhiβhi

NNa(αhi
+ βhi

)
δ(t− t′) (4)

〈ξni(t)ξni(t
′)〉 =

2αniβni

NK(αni
+ βni

)
δ(t− t′) (5)

where NNa and NK represent the total number of sodium and potassium channels within a membrane patch,
and are calculated as NNa = ρNaS, NK = ρKS where ρNa = 60µm−2 and ρK = 18µm−2 are the sodium and
potassium channel densities, respectively.24 S is the membrane patch area of each neuron.

Isyni is the total synaptic current received by neuron i. We consider coupling via chemical synapses. The
synaptic current takes the form31

Isyni =
∑

j∈neigh(i)

gcα(t− tj0)(Erev − Vi) (6)

where the alpha function α(t) describes the temporal evolution of the synaptic conductance, gc is the maximal
conductance of the synaptic channel and tj0 is the time at which presynaptic neuron j fires. We suppose α(t) =
e−t/τsynΘ(t), there Θ(t) is the Heaviside step function and τsyn = 3ms.

3. RESULTS

We analyse the signal averaged over all N neurons from the second network Vavr =
∑N
i=1 Vi/N . The example of

characteristic neuron dynamics one can on the Fig.1.

To investigate the dynamics os the system we analyse the coherence of a signal. For that we can calculate
the signal-to-noise ratio (SNR) derived from the energy spectrum using the Fourier transform:32

E(f) =
1

2π

∫ ∞
−∞

x(t) exp−i2πft dt (7)

The maximum energy in the spectrum Emax appears at the average frequency of spiking neurons fs. Therefore,
this spectral component reflects the contribution of a regular behavior, while the noise contributes mainly to the
background component EN at the same frequency fs.

33–35 The signal-to-noise ratio can be calculated from the
power spectra as SNR = E2

max − E2
N (dB) at the dominant frequency fs.

36

Another way to measure of coherence of the system is the calculation of characteristic correlation time defined
as36

τc =

T∑
n0

C(τ)2, (8)

where t0 is the transient time, T is the total time, C(τ) is the autocorrelation function given as

C(τ) =

〈
(xavr(n)− 〈xavr〉) (xavr(n+ τ)− 〈xarv〉)

〉〈
(xavr(n)− 〈xavr〉)2

〉 , (9)

where 〈...〉 is the time average after transients. The larger the correlation time, the better the coherence.

In this work we calculate the dependencies of signal-to-noise ratio and characteristic correlation time from
external stimulus amplitude (Fig.2). They both have the same dynamics: at low external stimulus amplitude
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Figure 2. The dependencies of signal-to-noise ratio and characteristic correlation time from external stimulus amplitude
(points) and the approximated dependencies by polynomial of order 6 (line) for ξ = 0.1.
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Figure 3. The dependence of characteristic correlation time τc from external stimulus amplitude Iex and noise amplitude
ξ = 1/10Spow.

all neurons are in ”silent” regime and there is no spikes generation. Increasing the stimulus amplitude leads
to increasing the both signal-to-noise ratio and characteristic correlation time. After Iex = 10.0 they start to
decrease, so the dependencies have resonance at this amplitude value.

In the next step is the analysing of two-dimensional dependence of characteristic correlation time from
amplitudes of external stimulus and internal noise. On the Fig.3 one can see the area of maximal coherence.
Based on this figure we can make some conclusions: (1) We can see the black area of ”silent” regime, when
neurons cannot generate spikes due to the luck of external current, but with the presence of relatively big noise
(Spow < 2.8) they no need this current for spike generation; (2) For really big noise (Spow < 3.5) there is no the
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dependence from external stimulus; (3) The bigger noise the narrower the maximal coherence area along external
current amplitude.

4. CONCLUSION

We have numerically simulated the dynamics of the brain under visual perseption using 2 layer Hodgkin-Huxley
neuron network. We have calculated characteristic correlation time and signal-to-noise ratio from power spectra
of signal averaging over all neurons in the second layer to measure the coherence of the system. Analyzing the
influence of amplitudes of internal noise and external stimulus on system dynamics we found that the coherence is
maximal on the certain value of stimulus intensity. It means that the network processes visual information better
for some values of external stimulus amplitude. We also analyze the influence of internal noise amplitude on
the system dynamics. Calculating two-dimensional dependence of characteristic correlation time from external
stimulus and internal noise amplitudes we find an area of maximal coherence of the network. It was found that
for big values of noise the system dynamics doesn’t depend from external stimulus amplitude.
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