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Abstract—The interaction between ensembles of coupled nonlinear oscillators using the model of multilayer
network is studied. It is found that the interaction between an ensemble with a chimera and an ensemble with
both coherent and incoherent states of oscillators can lead to both suppression of the chimera and a transition
to a coherent or incoherent state, or to the excitation of the chimeric state from the coherent or incoherent
state, respectively.
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INTRODUCTION
Research on the collective behavior of dynamic

systems is now largely associated with the study of chi-
meric states [1–5]. Such states, characterized by coex-
istence in a network of subgroup of coherent and inco-
herent dynamic elements, were first described in 2002
in [1]. Chimeric states were then obtained in networks
of nonlocal coupled nonlinear elements described by
complex Ginzburg–Landau equations [6], and in a net-
work of Kuramoto–Sakaguchi phase oscillators [7].

It has been shown that along with nonlocal coupled
oscillators, symmetry breakdowns and transitions
from a completely coherent state to the chimeric state
can occur in networks of oscillators with global cou-
pling [8, 9] or with local coupling [10–12]. In addi-
tion, it has been shown that chimeric states can emerge
in ensembles of dynamic elements of different natures,
including systems with periodic and chaotic dynamics
[13], neural systems [14], discrete displays [15], and
logical networks [16]. It should be noted that along
with model systems, the occurrence of the chimeric
state has been confirmed experimentally in chemical
[17], electronic [18], electrochemical [19], optoelec-
tronic [20], and mechanical [21] systems.

Despite the great interest in studying chimeric
states, and thus the great many works denoted to this
problem, consideration is generally limited to analyz-
ing the behavior of individual networks and does con-
sider the effects that can emerge as a result of their
interaction. Such effects include the stability of the
chimeric state in a network when it interacts with a
network of coherent or incoherent elements.

To consider this problem, the chimeric states of
interacting ensembles of nonlocal coupled nonlinear
elements are investigated in this work using a model of
a multilayer network. This model is often used both in
analyzing experimental data and in the mathematical
modeling of network dynamics caused by a multilayer
model corresponding to a large number of real systems
[22, 23].

One feature of a multilayer model is the presence of
two types of couples on each element. The first type
characterizes the interaction between the element and
other network nodes located within a single layer. The
second type determines the coupling of this element
and elements associated with other layers of a network.
Depending on the problem, the configurations of cou-
plings between the elements of a multilayer network
can be different. In this work, we consider the config-
uration described in [24].

MATHEMATICAL MODEL
According to [24], the investigated network con-

sisting of N × M elements can be presented as a set of
M layers (with N elements on each layer). The cou-
plings between the elements inside the layer are dis-
tributed nonlocally [25] (each element is coupled with
2R adjacent elements); interaction between layers
occurs via local couplings between two adjacent ele-
ments. A schematically of this model is shown in
Fig. 1. Values  correspond to dynamic variables
characterizing the states of network node (in this case,
the instantaneous value of phases of oscillators), and
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indices i and j correspond to the number of the ele-
ment inside the layer and to the layer number, respec-
tively. The couplings of element  with the adjacent
elements inside the layer are marked by the solid lines.
Interlayer coupling, which occurs via the interaction
between the element of first layer  and the adjacent
element of second layer , is marked by the dashed
line.

Kuramoto–Sakaguchi phase oscillator (1), which is
often used as the basic model for the numerical and
analytical study of chimeric states [26], is used in this
work to simulate the dynamics of the network node [7]:

(1)

In the formula (1),  corresponds to the natural
frequency of the oscillator;  is the coupling coeffi-
cient between the oscillators inside the layer;  is the
coefficient of interlayer coupling; R is the coupling
radius; M is the number of layers; and α is the constant
phase shift. The network of identical oscillators

 is considered in this work.

Value SI (see Eq. 2) characterizing the strength of
incoherence is calculated in this work for quantitative
diagnosis of the chimeric state. To calculate this quan-
tity, the investigated ensemble of oscillators is divided
into m groups of elements using n elements in the
group. For this ensemble, SI is defined as

(2)

where  is Heaviside function;  σ describes standard
deviation (3) characterizing the oscillators in the
group with index r; and  is the threshold
value. Quantity  is calculated for each group using
the relation

, (3)

where  denotes the averaging by time interval, Φ is
the ensemble average phase.

Depending on the values of SI, the network state
can be interpreted as completely coherent (SI = 0),
completely incoherent (SI = 1), or chimeric (0 < SI < 1),
corresponding to the coexistence of coherent and
incoherent clusters.
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RESULTS AND DISCUSSION
To study the excitation and suppression of the chi-

meric state, we investigated the behavior of a multi-
layer network numerically. The values of the parame-
ters characterizing the nodes of network and its topol-
ogy were chosen to be equal for each layer.

Quantity α defining the phase relation between
interacting oscillators of this layer was considered the
control parameter characterizing a network layer. Pre-
liminary studies of the dynamics of a network of Kur-
amoto–Sakaguchi phase oscillators showed that a
monotonous change in parameter α allows us to observe
the transition from the coherent state (α < 1.45) to the
chimeric state (α  ∈ [1.45–1.57]), and then to the
incoherent state (α > 1.57).

In light of the relations for analyzing the interaction
between chimeric and coherent states, the values of
parameter α were set at α1 = 1.45, and α2 = 1.2. For
interaction between chimeric and incoherent states,
these values were set at α1 = 1.45, and α2 = 1.7.

The instantaneous distributions of the phases of
oscillators for the specified values of parameters α1
and α2 when there is no interlayer coupling is shown in
Fig. 2a. The left column corresponds to when the chi-

Fig. 1. Schematic image of a two-layer network of oscilla-
tors with nonlocal coupling inside the layers (nonlocal
coupling was demonstrated using the example of the ith
node). The dashed-and-dotted lines correspond to inter-
layer couplings.
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meric state occurs on the first layer and the coherent
state occurs on the second layer. The right column
corresponds to the chimeric and incoherent states on
the layers, respectively. The initial values of the phases
of oscillators are in both cases distributed according to
the laws

(4)
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In both cases, noise is added to the initial distri-
bution.

Figures 2b, 2c shows the instantaneous distribu-
tions of the phases of oscillators of the first and the
second layers for weak ( ) and strong
( ) interlayer coupling, respectively. It can be
seen that with weak interlayer coupling, the chimera in
the first layer is suppressed and there is a transition to
the coherent or incoherent state, depending on the
initial state of the oscillators of the second layer
(Fig. 2b). When the value of parameter λ2 is increased,
we observe interesting features in the dynamics of this
system. It can be seen from Fig. 2c that the chimeric
state on the first layer is stable. The excitation of the
chimeric state in the ensemble of oscillators of the sec-
ond layer with both initial coherent and incoherent
dynamics is also observed.

It should be noted that as a result of strong inter-
layer interaction, the network transitions to the stable
state characterized by synchronous behavior of its lay-
ers (identical distributions of the phases of oscillators
are established on both layers). It is interesting that the
multilayered structure increases the parameter space
in which the chimeric state can occur. It is highly likely
that this pattern remains true for a wide class of net-
works with multilayer structure in which chimeric
states can occur.

CONCLUSIONS

The dynamics of a two-layer network of on nonlo-
cal coupled Kuramoto–Sakaguchi phase oscillators
was investigated. Cases where the ensemble of oscilla-
tors belonging to a single layer are in the chimeric
state, while the oscillators of another layer are in
coherent or incoherent states awerere considered. It
was shown that at low values of interlayer coupling
force, the chimeric state in the first layer is suppressed
and all oscillators of the network transition to a coher-
ent or incoherent state (depending on the state in the
second layer of the network). With high values of
interlayer interaction, we observe excitation of the chi-
meric state in the ensemble of oscillators of the second
layer, whether it is in a completely coherent or inco-
herent state.
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Fig. 2. Instantaneous distributions of the phases of oscilla-
tors on the layers for when there is no interlayer interac-
tion, λ2 = 0; when there is weak interaction, λ2 = 0.2; and
when there is strong interaction, λ2 = 0.5 . The left column
corresponds to the chimeric state occurs on the first layer
and the coherent state occurson the second layer. The right
column corresponds to the chimeric and incoherent states,
respectively. 

 5  7

 0  100 0  100

 0

 7

 0  100

i i

i i

i i

 5

 0  100 0  100

 7 5

 50

 50

 50

 50  100

 50  50

ϕ ϕ

ϕ ϕ

ϕ ϕ

(а)

(b)

(c)



BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES: PHYSICS  Vol. 81  No. 1  2017

EXCITATION AND SUPPRESSION OF CHIMERIC STATES 113

REFERENCES
1. Kuramoto, Y. and Battogtokh, D., Nonlinear Phenom.

Complex Syst., 2002, vol. 4, p. 380.
2. Abrams, D.M. and Strogatz, S.H., Phys. Rev. Lett.,

2004, vol. 93, p. 174102.
3. Sethia, G.C., et al., Phys. Rev. E, 2013, vol. 88,

p. 042917.
4. Omelchenko, I., et al., Chaos, 2015, vol. 25, p. 083104.
5. Mishra, A., et al., Phys. Rev. E, 2015, vol. 92, p. 62920.
6. Strogatz, S.H. and Stewart, I., Sci. Am., 1993, vol. 12,

p. 68.
7. Sakaguchi, H. and Kuramoto, Y., Prog. Theor. Phys.,

1996, vol. 76, p. 576.
8. Schmidt, L., et al., Chaos, 2014, vol. 24, p. 013102.
9. Sethia, G.C. and Sen, A., Phys. Rev. Lett., 2014,

vol. 112, p. 144101.
10. Bera, B.K., et al., Phys. Rev. E, 2016, vol. 93, p. 012205.
11. Laing, C.R., Phys. Rev. E, 2015, vol. 92, p. 050904.
12. Li, B.-W. and Dierckx, H., Phys. Rev. E, 2016, vol. 93,

p. 020202.
13. Gu, C., et al., Phys. Rev. Lett., 2013, vol. 111, p. 134101.
14. Hizanidis, J., et al., Int. J. Bifurcation Chaos, 2014,

vol. 24, p. 1450030.

15. Omelchenko, I., et al., Phys. Rev. Lett., 2011, vol. 106,
p. 234102.

16. Rosin, D.P., et al., Phys. Rev. E, 2014, vol. 90,
p. 030902.

17. Tinsley, M.R., et al., Nat. Phys., 2012, vol. 8, p. 662.
18. Larger, L., et al., Phys. Rev. Lett., 2013, vol. 111,

p. 054103.
19. Wickramasinghe, M. and Kiss, I.Z., PLoS ONE, 2013,

vol. 8, p. e80586.
20. Hagerstrom, A., et al., Nat. Phys., 2012, vol. 8, p. 658.
21. Martens, E.A., et al., Proc. Natl. Acad. Sci. U. S. A.,

2013, vol. 110, p. 10563.
22. Kivela, M., et al., J. Complex Networks, 2014, vol. 2,

p. 203.
23. Boccaletti, S., et al., Phys. Rep., 2014, vol. 544, p. 1.
24. Makarov, V.V., et al., Chaos, Solitons Fractals, 2016,

vol. 84, p. 23.
25. Bera, B., et al., Phys. Rev. E, 2015, vol. 93, p. 012205.
26. Omel’chenko, O.E. and Wolfrum, M., Phys. Rev. Lett.,

2012, vol. 109, p. 164101.

Translated by M. Kromin


		2017-02-09T11:48:11+0300
	Preflight Ticket Signature




