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Abstract—We propose a special brain-brain interface (BBI) to
enhance human-human interaction while performing collective
tasks. The efficiency of the proposed interface is estimated in
experimental sessions, where participants are subjected to the
prolonged task of classification of ambiguous visual stimuli with
different degrees of ambiguity. Our BBI allows increasing the
mean working performance of a group of operators due to
optimal real-time redistribution of a cognitive load among all
participants, so that the more difficult task is always given to
the member who exhibits the maximum cognitive performance.
We show that human-human interaction is more efficient in the
presence of the coupling delay determined by brain rhythms of
the participants.

Index Terms—Brain-brain interface, human-human interac-
tion, workload distribution, mental fatigue, visual task, visual
attention.

I. INTRODUCTION

The main goal of a brain-computer interface (BCI) is to
repair or increase human performance in solving cognitive
tasks. In this particular case, the machine being controlled
by human’s brain activity, assumes a part of the cognitive or
physical human load. The feedback information acquired from
sensors allows controlling the machine power in accordance
with the workload subjected by the human.

Similarly to the human-machine interaction, a human-
human interaction can be improved by a brain-brain interface
(BBI). In this situation, the machine component of traditional
BCI can be replaced by another human linked to the first
one by the interface which assistance enhances the subject
performance in managing a particular task. This would be very
helpful for a group of people subjected to a common job task
which requires sustained attention and alertness. In every day
practice, this is a common occurence, for example, among
pilots of a military [1] or a civil aircraft [2], or a power plant
operators, whose routine work includes continuous monitoring
of instrument readings, that requires sustained alertness and
concentration [3]–[5]. A human-human interface could help
such people to have effective interactions by estimating and
monitoring physical conditions of each person, in particular,
degree of alertness, in order to distribute workloads among all
participants according to their current physiological status.

In this paper, we propose a special BBI to enhance human-
human interaction while performing collective tasks. The

efficiency of the proposed BBI is estimated in experimental
sessions, where participants are subjected to the prolonged
task of classification of ambiguous visual stimuli with different
degrees of ambiguity.

II. METHODS

A. Subjects

Twenty healthy volunteers, twelve males and eight females,
between the ages of 20 and 43 with normal or corrected-to-
normal visual acuity participated in the experiments. All of
them provided informed written consent before participating.
The experimental studies were performed in accordance with
the Declaration of Helsinki and approved by the local research
Ethics Committee.

B. Visual task

All participants were subjected to the visual task of clas-
sification of consistently presented ambiguous Necker cubes
which can be interpreted as left- or right-oriented (Fig. 1(a)).
The Necker cube [6] is a 2D-image which looks like a cube
with transparent faces and visible ribs. An observer without
any perception abnormalities perceives the Necker cube as a
bistable 3D-object due to the specific position of the cube’s
ribs. Bistability in perception consists in the interpretation of
this cube as to be either left- or right-oriented depending on
the contrast of different inner ribs. The contrast g ∈ [0, 1]
of the three middle lines centered in the left middle corner
was used as a control parameter [7]. The cube’s ambiguity
is characterized by parameter g = y/255, where y is the
brightness of the middle lines according to the 8-bit grayscale
palette. The values g = 1 and g = 0 correspond, respectively,
to 0 (black) and 255 (white) pixels’ luminance of the middle
lines.

The value of g is considered as the degree of complexity
of this classification. One can see that unlike the cases when
g is close to 0.5, the images for which g is close to 1 or
0 can be easily interpreted as left- or right-oriented cubes,
respectively. According to the classification task, the whole set
of presented stimuli g = (0; 0.15; 0.4; 0.45; 0.55; 0.6; 0.85; 1)
is split into two subtasks: the task of high complexity for
highly ambiguous images with g = (0.4; 0.45; 0.55; 0.6) and



the task of low complexity for weakly ambiguous cubes with
g = (0; 0.15; 0.85; 1) (Fig. 1(b).

C. Experimental design

All participants were instructed to press either left or right
key depending on their first impression of the cube orientation
at each presentation. The subjects were randomly divided into
10 pairs and participated in two sets of experiments, without
coupling delay and with delay in the coupling. The both sets
contained two sessions, session 1 and session 2, each lasted
30 minutes. During the first session, the cubes with different
g were randomly selected from the whole set of stimuli,
and each stimulus was presented about 30 times. During the
second session, the whole set of stimuli was split into two
sets, the stimuli with high ambiguity (HC) and the stimuli
with low ambiguity (LC). These different sets of stimuli were
presented to the participants according to their brain responses
amplitude. Namely, a subject whose brain response amplitude
exceeded one calculated for his/her partner got stimuli with
higher ambiguity.

D. Estimation of the brain response

We analyzed the EEG signals recorded by five electrodes
(O1, O2, P3, P4, Pz) placed on the standard positions of
the ten-twenty international system [8], using the contin-
uous wavelet transform [9]. The wavelet energy spectrum
En(f, t) =

√
Wn(f, t)2 was calculated for each EEG channel

Xn(t) in the f ∈ [1, 30]-Hz frequency range. Here, Wn(f, t)
is the complex-valued wavelet coefficients calculated as

Wn(f, t) =
√
f

t+4/f∫
t−4/f

Xn(t)ψ∗(f, t)dt, (1)

where n = 1, ..., N is the EEG channel number (N = 5 being
the total number of channels used for the analysis) and “*”
defines the complex conjugation. The mother wavelet function
ψ(f, t) is the Morlet wavelet often used for the analysis of
neurophysiological data defined as

ψ(f, t) =
√
fπ1/4ejω0f(t−t0)ef(t−t0)

2/2, (2)

where ω0 = 2π is the central frequency of the Morlet mother
wavelet [10].

Each event associated with the presentation of a single
visual stimulus was analyzed separately in the alpha and
beta frequency bands on a 1-s interval preceding the image
presentation and followed by the moment of the stimulus
appearance. Electrical brain activity in alpha and beta bands is
associated with visual attention and stimuli processing [11]. A
special digital trigger was sent by the software together with
the presentation of the stimuli initiated the calculation.

As a result, the set of values A1
i , A2

i , B1
i , B2

i were calculated
for i-th presentation as follows

A1,2
i =

N∑
n=1

∫
t∈τ1,2

i

ξn(t′)dt′, where (3)

ξn(t) =

{
1, if fnmax ∈ ∆fα,
0, if fnmax /∈ ∆fα.

(4)

B1,2
i =

N∑
n=1

∫
t∈τ1,2

i

ξn(t′)dt′, (5)

where ξn(t) =

{
1, if fnmax ∈ ∆fβ ,
0, if fnmax /∈ ∆fβ ,

(6)

where N = 5 is the number of EEG channels and fnmax is the
location of the maximal spectral component.

The obtained values were averaged over 6 presentations,
and then the control characteristic I(i) was calculated as

I(i) =
(a1i − a2i )− (b2i − b1i )

2
, (7)

where a1,2i and b1,2i were obtained as

a1,2i =
1

6

i∑
n=i−6

A1,2
n , (8)

b1,2i =
1

6

i∑
n=i−6

B1,2
n (9)

by averaging A1,2
i and B1,2

i values over 6 presentations.
The value of I(i) calculated using Eqs. (3-7) in real time,

reflects the intensity of the brain response on the appearing
visual stimuli. Large I(i) is associated with a high response
due to more careful image processing by the subject, whereas
small I(i) is associated with a low response, which takes
place when the subject does not pay much attention on the
classification task.

E. Experimental setup

The experimental setup is demonstrated in Fig. 1(c). The
ambiguous visual stimuli (Necker cubes) with different degree
of ambiguity were consistently presented to participants who
had to classify them. The complexity of the task was deter-
mined by the degree of ambiguity; the higher the ambiguity,
the greater the observer’s attention. First, each stimulus was
simultaneously presented to a pair of operators (subject 1 and
subject 2) using a special software running on the correspond-
ing client personal computers (PC1 for subject 1 and PC2
for subject 2). During these presentations, the subjects’ EEGs
were simultaneously recorded and transmitted in real time to
the corresponding PCs. The performance of each operator was
estimated using his/her stimulus-related brain response I(i) to
every presented i-th stimulus. The analysis was carried out on
the base of the EEG spectral properties.

The brain responses I1(i) and I2(i) of subject 1 and
subject 2, respectively, were transmitted to the computational
server for the comparative analysis of the signals obtained
for every presented i-th stimulus. Depending on the result of
this comparison, the corresponding control command was sent
to each PC to adjust the ambiguity range of the presented
stimuli for each subject. For example, if I1(i) > I2(i), then
subject 1 received a stimulus with higher ambiguity, while
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Fig. 1. (a) Visual task illustration. (b) Whole set of visual stimuli split into two sets: (upper row) cubes with high degree of ambiguity representing the task
of high complexity (HC) and (lower row) cubes with low degree of ambiguity representing the task of the low complexity (LC). (c) Schematic illustration of
the brain-brain interface.

subject 2 perceived a stimulus with weaker ambiguity. Thus,
the feedback signal from the computational server managed
the task handout depending on the stimuli complexity and the
operator’s performance.

III. RESULTS

The proposed BCI was tested in two sets of experiments.
During the first set of experiments, a pair of participants inter-
acted through a non-delayed coupling, i.e., the task complexity
was distributed among the participants based on their instan-
taneous alertness; the partner with higher alertness received a
higher complexity task, while another partner was tasked with
lower complexity. Unlike the first set of experiments, during
the second set we introduced a delay in the coupling between
the participants. If the difference between their degrees of
alertness became larger than 10%, the partner with greater
alertness received a higher complexity task. Both sets of the
experiments were preceded by the non-coupled session, during
which both subjects received the whole set of stimuli, i.e., the
degree of image ambiguity was randomly chosen from the
range [0, 1], and the feedback signal from the computational
server was absent. In this preliminary experimental session,
the individual brain response level was measured before the
coupling was applied.

For each session, the average individual performance 〈I1,2〉
was calculated for each subject by averaging his/her brain
response I(i) over 200 image presentations. Then, 〈I1,2〉 of
both subjects in the pair were averaged in order to estimate
the pair’s performance 〈Ipair〉.

The results of the comparison between two sets of the
experiments are presented in Fig 2 in the form of box-and-

1

1

2

2

*

0

100

-100

session session

<I     >

p=0.48

0

100

-100

50 50

-50 -50

b
ra

in
 r

e
sp

o
n

se
 a

m
p

lit
u

d
e

m
e

a
n

 in
 p

a
ir

(b)(a)

b
ra

in
 r

e
sp

o
n

se
 a

m
p

lit
u

d
e

m
e

a
n

 in
 p

a
ir

pair <I     >pair

Fig. 2. (a) Mean brain response 〈Ipair〉 for pairs during the first set of
experiment: session 1 (no link between subjects, p = 0.979 by ShapiroWilk
normality test) and session 2 (no delay in coupling between subjects, p =
0.847 by Shapiro-Wilk normality test) (not significant, n = 10, p = 0.48 by
paired sample t-test). (b) Mean brain response 〈Ipair〉 for pairs during the
second set of experiments: session 1 (no link between subjects, p = 0.108
by Shapiro-Wilk normality test) and session 2 (no delay in coupling between
subjects, p = 0.622 by ShapiroWilk normality test) (significant change, n =
10, *p < 0.05 by paired sample t-test). Medians (green bars), 25 ÷ 75
percentiles (box) and outlines (whiskers) are shown.

whiskers diagrams which show average performance 〈Ipair〉
in all pairs. One can see that according to the group analysis,
the interaction between subjects during the first experimental
set (Fig 2(a)) did not bring a significant effect on the degree
of their performance. On the contrary, we uncovered a signif-



icant increase in the degree of pair’s alertness in the second
experimental set (Fig 2(b)), where the task complexity was
changed as soon as a 10% difference appeared between the
values of I1(i) and I2(i).

IV. DISCUSSION

In order to explain the obtained result, let us consider the
evolution of the brain response during one experimental ses-
sion. The dependence I(i) illustrates a change in the amplitude
of the brain response as the number of presented Necker cubes
i is increased. This dependence exhibits oscillations whose
period varies from 15 to 40 presented stimuli (solid curves in
Fig. 3). Such oscillatory behavior of the brain response can
be associated with the existence of the brain restoration state
caused by relaxation oscillations of the neural ensemble. The
black and green curves in Fig. 3 correspond to the dependences
I(i) calculated for the subjects in pair during the second
session of the first (a) and second (b) set of the experiments.
The lower traces show switches between presentations of two
sets of visual stimuli (high ambiguous and low ambiguous),
i.e., switches of the task complexity.
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Fig. 3. Results of the (a) first and (b) second sets of experiments. (Upper
traces) Brain responses of each subject in the pair (I(i)). (Lower traces)
Switches between two sets of visual stimuli (HC and LC). The arrow shows
a single switch of the task change. The length of the interval (∆) between
two successive switches is measured in the number of presented stimuli.

One can clearly see in Fig. 3(a), that during the first
experimental set, where the task complexity was switched im-
mediately as soon as the amplitude of the brain response of one
subject (I1(i)) exceeded the brain response of another subject
(I2(i)), there are many frequent switches with ∆ < 5, smaller
than the average period of I(i) oscillations. In this case, the
dependencies I1(i) and I2(i) obtained for two subjects do not
demonstrate an antiphase mode. On the contrary, in the second
experimental set (Fig. 3(b)), the values of I(i) obtained for two
subjects behave mostly in antiphase and therefore the switches
are not so frequent.

One can conclude that in the first experimental set, the
multiple unnecessary spontaneous switches caused by high-
frequency fluctuations of I(i), interfered with the establish-

ment of an antiphase mode between oscillations of the values
of I1 and I2 of the subjects in the pair. During the second
experimental set, such switches appeared more scarcely and
the interval ∆ between two successive switches matched the
period of the I(i) oscillations, which was estimated to be
varied from 15 to 40 stimuli presentations. Taking into account
that the period of I(i) oscillations appeared in the same range,
we can conclude that the switching regime in the second set of
the experiments mostly satisfies the criteria described above,
and therefore leads to an increase in pair’s performance.

V. CONCLUSION

In this paper, we have demonstrated, for the first time to
the best of our knowledge, the possibility to increase human
cognitive performance due to assistance of another human by
sharing a cognitive load between them using a brain-brain
interface.

Having analyzed the mean degree of alertness in these
experiments, we have found that increasing alertness was only
observed in the experiment where the task complexity was
changed as soon as the difference in the degree of alertness
between the partners exceeded 10%. We have shown that this
effect is caused by the oscillatory behavior of the degree
of alertness, where the oscillation period is determined by
the brain restoration. In this respect, the effective interval of
the change in the task complexity coincides with such brain
rhythm.

It should be noted that human-human interaction has re-
cently become a very hot topic in neuroscience, physics and
IT-technologies. In particular, the possibility of human-human
interaction via BBI was demonstrated in a way, where motor
information registered in the cortical region was transmitted to
the motor cortex region of another subject via brain stimulation
[12]–[15]. Although this BBI transmitted information directly
from brain to brain, it did not improve their working perfor-
mance. The control command was translated to the receiver’s
brain in any case, regardless the willingness to perform the
action. In other words, the previous BBI system did not take
into account the brain states of interacting people.

Instead, our BBI analyzes and compares human brain states
in order to enhance their working performance in tasks which
require sustained attention. This is a core feature of human-
human interaction. Possible applications of the proposed BCI
are widespread, from aircraft pilots to nuclear plant operators,
in all cases where a cognitive or physical load needs to be
unequally distributed among participants according to their
current psychophysiological conditions.
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