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Abstract—The article describes the process of developing a
wireless software arrapat complex for measuring and logging
various aspects of sports shooting training. The purpose of the
development is to optimize and personalize the training process.
This paper proposes an approach that allows synchronization up
to 1 ms over a wireless network. As well as a method of writing
a large amount of this on a microSD flash drive with minimal
latency.

Index Terms—sensors, optimization of training, synchroniza-
tion of wireless devices

I. INTRODUCTION

Today, the field of cognitive research on human activity

during various sports exercises is developing at a rapid pace

[1]–[3]. This provides great opportunities to create more

effective workouts and allows for a personalized approach

to each individual. One of the main components of this

kind of research is the measurement of brain activity during

exercise. This can be done with various EEG or fNIRS sensors

which can be placed on the athlete’s head [4]–[18]. Note

that modern methods of studying the activity of the brain are

inconceivable without numerical simulation of neural network

activity by using different neuron’s models [19]–[23] which

allows to investigate the processes of inter-neuron interaction

or collective neural dynamics [24]. In addition, studying the

brain is unthinkable using artificial intelligence methods and

statistical analysis [25]–[30]

But for a complete analysis of brain activity, it is necessary

to know with high precision all the factors influencing the

changes of each potential at any given time. This also requires

measurements of various external factors. For sports shooting,

for example, it is necessary to measure the movements of

the weapon during aiming and firing. It is also necessary to

accurately determine the moment of firing based on the sound

wave. The measuring equipment must not interfere with the

athlete’s natural movements, as this would create additional

distractions.

Therefore, as part of this paper, a wireless measuring device

has been developed that can measure the above parameters at

high frequency and also synchronized with other measuring

devices, such as an electroencephalograph, eyetracker, and

another [31].

II. SENSOR DESIGN

Sport Shooting is a sporting discipline in which competitors

compete in accuracy and precision in hitting targets with a

variety of weapons. During shooting, many different cognitive

processes take place in the brain. For example, the process

of aiming requires a high level of concentration and accuracy

on the part of the athlete. Aiming is accompanied by moving

the weapon to the desired position and then firing. In order

to study such actions, it is necessary to accurately measure

the movements and vibrations of the weapon, to know the

moment of the shot and track the sound wave, and to measure

brain activity. In order to match all the data, the devices

in the network must be precisely synchronized, this will

allow accurate identification of triggers for further study and

analysis. The ”synchronization” section describes a method for

solving this problem.

In order to perform all of the above environmental mea-

surements, a hardware-software module was developed. The

motion measurements are made with the IMU module Figure

1, and the measurement of the firing torque with the micro-

phone.

Due to the fact that the use of wires interferes with the nat-

ural movements of a person, the tracker uses a controller that

supports wireless communication ESP32. A class 4 microSD

flash drive is used for data logging, also sensitive microphone

is used to measure the moment of shot and sound wave.

To work in wireless mode, the tracker has a battery that

connects to the built-in charging module. Figure 2 shows an

example of how to place the tracker, IMU, and microphone

on a sport shotgun.

To record data in real time at 2 kHz, software was developed

to allow recording of memory blocks with minimal latency.

The basic idea is that the data is written to the RAM in 512

bytes, then when the stick controller is available the data is
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Fig. 1. Functional diagram.

written to the stick. To speed up writing and optimize the

storage of values, the data is stored in binary form as a

structure. Conversion from binary format to character format

is performed during post processing on a personal computer.

The TCP protocol is used to control the process of starting,

stopping recording and transferring files.

Fig. 2. Example sensors placement.

III. SYNCHRONIZATION

To perform neurophysiological experiments it is necessary

to synchronize measuring equipment as accurately as possible.

Today there are many technologies of clock synchronization,

of which the most popular is NTP, which allows obtaining ac-

curate time through a local network or public access network,

such as the Internet. But this technology has a number of

disadvantages: synchronization accuracy less than 10 ms, high

hardware requirements. These criteria are especially important

when used in embedded systems. On-board microcontrollers

have a small amount of RAM as well as a small processor

frequency. The use of NTP server in such devices slows it

down and complicates the performance of measurement tasks.

To solve this problem, a simple and effective algorithm for

time synchronization in the local network with an accuracy of

1 millisecond was developed and implemented called Network

Time Synchronization (NTS). Figure 3 shows a block diagram

of this algorithm.

After starting the controller connects to the wireless network

Wifi and if the connection was successful the NTS client object

is created. Then the object must be initialized by specifying

the synchronization period, server IP and port. After that

asynchronous callback function is automatically created in a

separate thread. This function is triggered when the server

sends a response. The UDP protocol is used to transmit packets

over the network that does not require confirmation of the

message transmitted due to this protocol is recommended for

use in real-time systems.

Fig. 3. Block diagram.

Each packet NTS client has two 32-bit data fields: PC

time (Tserver) and packet key. The packet key is necessary to

correctly identify the response from the server because UDP

does not guarantee that the packet will be delivered and that

the receiving queue will not be broken.

After receiving the response from the NTS server the client

compares the time of sending the packet Tsp and the time of

receiving Trp. {
dt = Trp − Tsp

dt <= 1 (ms)
(1)

If condition 1 is not true, the client generates a new message

key and sends a second request to the server. If after n (n -

number of attempts, set to unload the microcontroller) attempts

the condition was not true, the repeated request will be made

after the time interval set during the initialization.

If condition 1 is true, then the new estimated server time

Tns is calculated according to Eq. (2).

Tns = Ts + (Trp − Tmc) (2)

where Ts - server time received after the last synchro-

nization, Tmc - time of the microcontroller at the time of

the last successful synchronization. Due to the fact that the

time on different devices is different and there may be non-

deterministic delays in the network it is necessary to calculate

the ”time offset” Tos if condition 3 is correct.

Tos = Tns − Tserver, if Tns > Tserver (3)

where Tserver - the actual server time received inside the

packet.

After a successful calibration, the current server time with

millisecond accuracy can be obtained at any time using Eq.

(4). {
Ts, if (Tclient − Ts) < Tos

(Tclient − Tmc) + Ts, else
(4)
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where Tclient - the current time of the microcontroller in

milliseconds. This technology significantly offloads the CPU

and RAM of the microcontroller, allowing resources to be used

for other more important tasks.

IV. CONCLUSION

In the process, a wireless tracker was developed to measure

various shot parameters during sport shooting training. Using

the IMU module, the tracker can measure angular velocities,

accelerations, temperature and magnetic field. The microphone

can also be used to measure sound flow. Thanks to the onboard

microSD stick, the module can log data at up to 2 kHz. This

tracker is not only suitable for sport shooting, it can be used

in many other experiments where it is necessary to measure

the above mentioned parameters.
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