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ABSTRACT

Experimental design for recording of EEG and fNIRS during performance of real and imaginary movement was
proposed. Set of experiments was conducted in accordance with this design and obtained EEG and fNIRS
dataset was analyzed. Analysis allowed to introduce certain features in time-frequency domain that can be used
to separate real motor activity from motor imagery.
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1. INTRODUCTION

Modern studies of brain activity attract researchers from various fields of science due to interdisciplinary nature of
problem. Considerable progress in spheres of experimental and data processing methods provides opportunities
for vast and detailed studies of specific phenomena in brain neural network. Recent works in this field combine
approaches of mathematics, physics and nonlinear dynamics with neurophysiological and biological view on the
processes in brain neural structures.!”” High interest of researchers to the problem is proved by increasing
number of interdisciplinary publications.® 13

Source of studied brain activity — neural ensemble — is considered as complex oscillatory network with great
number of elements and connections. Activity of individual elements — neurons — along with inter-element
interactions result in complex dynamics. Studying of brain activity and its complex dynamics is an essential
problem since some features of this activity (like time-frequency properties) can provide information about state
of nervous system and whole living organizm.'* Motor activity (real and imagery) is one of such states of interest.

Motor activity and related mental tasks are widely used in development of brain-computer interfaces (BCIs).
BCI performs an online detection of various features of electrical signals, such as electroencephalograms (EEGs),
including a transformation of certain patterns into control commands for the mechanical part, to provide special
actions in the surrounding world without the use of muscles.'® Instead of electrical processes, other sources of
information about brain can also be used, for instance, functional near-infrared spectroscopy (fNIRS).¢:17

The ultimate goal of BCI is possibility to generate control commands without any muscular activity. In
this case motor imagery tasks (or imaginary movements without real neuromuscular activity) become good
candidates. Motor imagery, sometimes is considered to be a conscious use of unconscious preparation for an actua
lmovement.'® Previous studies outlining the similarities between real motor activity and motor imagery.!?-2!
In terms of application in BCI the main question is whether motor imagery follows the same cortical layout as
motor execution in the primary motor cortex (M1).

The most wide-spread method for investigation of brain activity is electroencephalogram (EEG).?2 EEG
is commonly used to obtain information about electric activity in different parts of brain in its normal or
pathological state. EEG methodics suggests placing special electrodes on scalp (or into brain directly) and
recording EEG signals as sum of electric currents generated by group of neurons.?? EEG signal being a product
of complex neuronal network is characterized by complex time-frequency structure with number of specific
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frequency ranges, oscillatory patterns, noise components (artifacts), etc.2* It is well-known, that there is a
strong correlation between EEG rhythmic activity and functional state of organizm,?® which can be used in
studies on specific states, for example, related to real and imagery motor activity.26 28

Another popular method for estimation of brain activity is functional near-infrared spectroscopy (fNIRS)
- a noninvasive, relatively low-cost, portable optical brain-imaging technique.?® It uses near-infrared light to
measure changes in oxygenated (HbO) and deoxygenated (HbR) hemoglobin levels due to the hemodynamic
response, the rapid delivery of oxygenated blood to active cortical areas through neurovascular coupling.?’
Despite lower temporal resolution and time delay of the hemodynamic response compared to EEG signals,
fNIRS represents another approach to obtain information about brain activity, which can be complementary to
information provided by EEG analysis.

In this paper we performed combined analysis of EEG and fNIRS data acquired during human’s real motor
activity and motor imagery. We performed analysis of EEG signals with help of CWT and analysis of hemody-
namics acquired through fNIRS. We found that there certain features on both EEG and fNIRS signals related
to different types of motor activity. We showed that both EEG and fNIRS analysis have own pros and cons in
detection of certain real or imaginary motor activity, so combination of these two approaches can be used with
greater efficiency.

2. METHODS

Twenty conditionally healthy volunteers (20-40 years, men and women both), right-handed, amateur practitioners
of physical exercises, and non-smokers participated at the experiment. All of them were asked to maintain a
healthy life regime with an 8-hrs night rest during 48 hrs prior the experiment. Each participant provided
informed written consent before participating in the experiment. The experimental procedure was performed in
accordance with the Helsinki’s Declaration.

Design of experiment suggested simultaneous recording of two types of signals: electroencephalogram (EEG)
and functional near-infrared spectroscopy (fNIRS).

EEG is sum of electrical currents generated by a small group of neurons in brain network.'* For EEG
recording we used electroencephalograph “actiCHamp” by Brain Products (Germany). For EEG signal recording
we used “ActiCap” — active Ag/AgCl electrodes (one for each EEG channel) placed on the scalp with the help
of special cap. To increase the skin conductivity we treated scalp skin with abrasive “NuPrep” gel before the
experiment and placed EEG electrodes on conductive “SuperVisc” gel. After the electrodes were placed, we
monitored the impedance to get best possible quality of EEG recordings. Common impedance values were < 25
kQ which is quite sufficient for active EEG electrodes. EEG signals were recorded with sampling rate of 1000
Hz and filtered by band-pass filter (cutoff frequencies at 0.016 Hz and 70 Hz), as well as 50-Hz notch filter.

fNIRS is a noninvasive, relatively low-cost, portable optical brain-imaging technique.?® It uses near-infrared
light to measure changes in oxygenated (HbO) and deoxygenated (HbR) hemoglobin levels due to the hemody-
namic response, the rapid delivery of oxygenated blood to active cortical areas through neurovascular coupling.3’
Despite lower temporal resolution and time delay of the hemodynamic response compared to EEG signals, {NIRS
represents another approach to obtain information about brain activity, which can complementary to information
provided by EEG analysis.

In the common configuration for fNIRS recording, light sources and detectors are placed on the scalp and two
wavelengths of light are transmitted through skin, skull and top layer of the cerebral cortex. fNIRS uses light with
two wavelengths: ~ 700 and ~ 900 nm, that can pass through skin, bone, and water, but are highly absorbed
by HbO and HbR correspondingly.?! Because HbO and HbR have different light absorption properties, the
relative changes in HbO and HbR, and therefore the change in oxygenation of the tissue, can be calculated from
changes in the reflected dual-wavelength light using the modified Beer-Lambert law.32 Obtained distributions
of HbO and HbR are analyzed for different cortex areas to find ones that are activated during particular real or
imaginary movement. We used NIRScout device by NIRx company (Germany) with 8 sources and 8 detectors
and time resolution of 7.8 Hz.

According to experimental design EEG and fNIRS electrodes were placed on the subject’s scalp at the same
time (see Fig. 1). EEG electrodes were arranged according to international “10-10” scheme — in our case we used
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Figure 1. Electrode placement on the subject’s head: 31 EEG electrodes with ground N and reference A according to
“10-10” system (shown as green circles) and fNIRS electrodes: 8 sources (red circles) and 8 detectors (blue circles) — each
pair “source-detector” connected by blue line form a fNIRS channel.

31 EEG electrodes with ground electrode N on the fore head and reference electrode A on the right mastoid.
Such EEG electrode placement provides good covering of all important areas of brain including primary motor
cortex (M1). Due to the limited number of fNIRS electrodes (8 sources and 8 detectors) all of them were placed
in the area of M1. Each pair “source-detector”, that were close enough to each other, formed fNIRS channel.

Basic experimental design was the following: subject was sitting in a chair with hands on armrests and feet
flat on the ground. The screen before subject demonstrated text command. Each experiment consisted of two
parts: first, subject was asked to perform real movement with left and right hand according to the commands,
then after a short rest he/she was asked to imagine the same movements after corresponding commands on the
screen. In EEG experiment subject was given ~ 8 s to perform one session of real or imaginary movement
after text command with 14-15 s breaks between consecutive commands. Hand movement consisted of repeated
tapping of one of four fingers against the thumb, finger order and tapping pace were comfortable for the subject.

For time-frequency analysis of EEG signals continuous wavelet transform (CWT) was used.?®3* The CWT
is widely used method for time-frequency analysis of complex nonstationary signals with multiple rhythmic
components.?® During recent interdisciplinary studies this method recommended itself as a powerful instrument
for analysis of experimental biological data and obtaining essential information about complex dynamics of
physiological systems including brain.36

The CWT is computed as convolution of EEG signal z(t) with wavelet basis function ¢, ,:

Wa(s.1) = 2 [ st 1)

where n = 1, 2... N is the number of EEG channel (N = 31) and “*” stands for complex conjugation. Each
basis function ¢; , can be obtained from one function g called mother wavelet:

pur(®) = 700 (252, )

where s — time scale responsible for extension/compression of mother wavelet, ¢y — time shift of mother wavelet.
Complex Morlet wavelet was used as mother wavelet:

. 2
pol) = Hene 3)
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Figure 2. Distributions of HbO (blue) and HbR (green) for real left hand (a, b) and right hand (¢, d) movement.
Distributions provided for left (C3 channel) and right (C4) hemispheres. Red vertical line marks the start of movement.

where parameter wy = 27 is the central frequency of Morlet wavelet.

Wavelet energy characterize distribution of spectral power in time and in frequency domains and can be
computed as

E(f,r) = W(f,7)? (4)

Surface of CWT energy (wavelet spectrum) provides common information about time-frequency structure of the
signal, such as length of some pronounced oscillatory patterns and their main frequencies.

Wavelet energy spectrum is commonly analyzed in number of specific frequency bands: delta (2-4 Hz), theta
(4-8 Hz), alpha (8-13 Hz) and beta (15-30 Hz). For one particular frequency band F averaged wavelet energy

was calculated as: )

Erp(t) = N /fefp E(f,t)df, (5)

The wavelet analysis of EEG recordings was performed with developed C/Cuda software for increasing com-
putation performance.3”

3. RESULTS

In the first part of our work we analyzed fNIRS signals — results are illustrated on Fig. 2 (for real motor activity)
and Fig. 3 (for motor imagery). As one can see, increase in level of HbO with corresponding decrease of HbR mark
each type of movement, real or imaginary. Moreover, this dynamics is more pronounced in right hemisphere (C4
EEG channel) for left hand and in left hemisphere (C3) for right hand real movement, which opens opportunity
to distinguish different types of movement with help of {NIRS. However, as seen from Fig. 3 mentioned dynamics
is less notable for motor imagery — one can see short increase in HbO several (~ 10) seconds after the start of
motor imagery, so {NIRS signals can be used to some degree for detection of imaginary movements. The main
problem here is that left and right hand motor imagery are difficult to separate one from another.

In the second part of our work we computed wavelet energy spectra (f,t) along with wavelet energy averaged
over alpha frequency range F,(t). Fig. 4 demonstrate results obtained for real and imaginary movement of
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Figure 3. Distributions of HbO (blue) and HbR (green) for imaginary left hand (a, b) and right hand (c, d) movement.
Distributions provided for left (C3 channel) and right (C4) hemispheres. Red vertical line marks the start of movement.
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Figure 4. Results of EEG analysis: wavelet spectra for right hand real (a) and imaginary (b) movement, distributions for
wavelet energy averaged over a-range for right hand real (c) and imaginary (d) movement. Dark blue vertical line marks
the start of movement. Shaded frame marks area with drop in a-rhythm activity.

right hand on EEG channels C3 (left hemisphere). It can be seen that Fig. 4a,c demonstrates notable drop in
a-activity shortly after real movement. This can be used to distinguish movement from background activity,
however, there is no essential difference in such dynamics for left and right hand movement. Fig. 4b,d also shows
decrase in a-rhythm after motor imagery, however, these changes appear much earlier than for fNIRS signals
(~ 1.5 — 2 s against ~ 10 s). This opens opportunity to combine analysis of EEG and f{NIRS data: fNIRS can
be used to find cortex areas that are more active during certain motor activity while EEG can be used for faster
and more precise detection, which is especially important in case of BCIL.
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4. CONCLUSION

In this paper we performed combined analysis of EEG and fNIRS data acquired during human’s real motor
activity and motor imagery. We performed analysis of EEG signals with help of CWT and analysis of hemody-
namics acquired through fNIRS. We found that there certain features on both EEG and fNIRS signals related
to different types of motor activity. We showed that both EEG and fNIRS analysis have own pros and cons in
detection of certain real or imaginary motor activity, so combination of these two approaches can be used with
greater efficiency.

Knowledge on features of real and imaginary motor activity along with approaches for its detection can be
helpful for further fundamental studies on human motor-related tasks. Obtained results can also be used in
development of BCI with implementation of combined EEG and fNIRS analysis.
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