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Abstract—We propose a method for the diagnostics of human brain states using MEG records and an artifi-
cial neural-network apparatus. It is shown that this approach allows various states of the human brain to be
classified in the case of making decisions related to the perception of visual stimuli.
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The concept of artificial neural networks (ANNs)
offers an effective mathematical tool for the analysis
and interpretation of human brain activity [1]. The
ANN apparatus has been widely used for studying the
features of brain functioning based on data of MRT
[2], EEG [3], MEG [4], and other neurophysiological
methods [5].

The prospects of using the ANN approach in neu-
ral science are related primarily to the creation of a
computational basis for a modern brain–computer
interface (BCI) [6]. From this standpoint, ANNs have
been used for the classification of motor-activity pat-
terns and the diagnostics of psychiatric disorders and
pathological brain activity [7–9]. In these applica-
tions, a properly trained ANN is capable of high-pre-
cision recognition of clearly pronounced and well
reproducible patterns of oscillatory activity of the
brain neural ensemble. In addition, it also of consider-
able interest to use ANN in cases where the brain
exhibits intermittent switching between certain stable
states or occurs in an intermediate state between these.
This dynamics is typical of cognitive processes
involved in perception of external stimuli or making
decisions [10]. In this context, questions arise as to
whether it is possible to teach ANN recognize various
states of brain when making decisions and which
peculiarities of brain functioning in these states can be
revealed. Answering these questions is important for
both understanding fundamental processes of cogni-
tive human activity and employing artificial intelli-
gence methods in developing new human–machine
systems capable of increasing the efficiency of brain
functioning in cognitive-activity states.

In accordance with the above considerations, this
work was devoted to diagnostics of the state of a neural

ensemble in the course of making decisions with the
use of ANN. For this purpose, we have selected an
optimum ANN architecture and processed multi-
channel MEG records obtained in experiments on the
perception and interpretation of ambiguous visual
stimulus. It should be noted that an ambiguous (mul-
tistable) visual stimulus means an image that admits
several interpretations.

It this work, an ambiguous stimulus was repre-
sented by a Necker cube [11], which is frequently used
in theoretical and experimental investigations of visual
perception [12–14]. A Necker cube is the classical
example of an ambiguous plane image comprising a
superposition of projections of the left- and right-ori-
ented volume cubes. The maximum contrast of visible
wireframe ribs corresponds to almost unique identifi-
cation of the cube orientation by observer, whereas a
low contrast of ribs leads to ambiguous perception of
the cube orientation (Fig. 1). Thus, the contrast of ribs
plays the role of a control parameter that provides vari-
ation of the degree of ambiguity in interpreting image
of the visual stimulus. This parameter (denoted by I)
can take any value from 0 to 1, where I = 0 corresponds
to the left-oriented cube projection, I = 1 corresponds
to the right-oriented cube projection, and I = 0.5
refers to the Necker cube with the most ambiguous
perception. Note that a characteristic feature of per-
ception of the ambiguous Necker cube is frequent
switching of the image interpretation. This behavior
can be related to switching between the two states of
activity of the brain neural network. Accordingly, it
was of interest to reveal different coexisting states of
human brain activity and study the switching between
these states.
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Fig. 1. Images of a bistable Necker cube presented to par-
ticipants during experiments for visual perception depend-
ing on contrast I of visible ribs: images with I < 0.5 are usu-
ally interpreted as left-oriented; images with I > 0.5 are
usually interpreted as right-oriented.
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Fig. 2. (a) ANN of forward propagation with MLP design
with N = 102 inputs (corresponding to the number of
informative MEG channels), two hidden layers (with 15
and 5 neurons), and an output layer with a single neuron;
(b) results of teaching and testing of the neural network:
gray column shows the number of correctly classified
events at the teaching stage; white and black columns cor-
respond to the numbers of correctly and incorrectly classi-
fied events, respectively, at the testing stage. The rms error of
classification at the teaching stage is on the order of 10–5.

100% 100%

88%
84%

12%
16%

x1(t)

x2(t)

x3(t)

x4(t)

(a)

(b)

Y(t)

Output

layer

Hidden

layer H2

Hidden

layer H1

Input

signal

xN(t)

Class “0” Class “1”
The investigations performed in the framework of
this work were divided into two stages. The first stage
was devoted to experiments on monitoring of the brain
activity during perception of an ambiguous visual
stimulus in a group of five healthy volunteers (males
and females) aged 26–30. The activity of the neural
ensemble of the cerebral cortex was monitored using a
VectorVeiw 306 Channel MEG system (Elekta AB,
Sweden) comprising 102 magnetometers and 204 pla-
nar gradiometers (306 channels) and capable of
recording MEG signals at a discretization frequency of
1000 Hz. The experiments were performed in accor-
dance with the Declaration of Helsinki (World Medi-
cal Association). In every experimental session, each
participant was presented a set of 15 visual stimuli with
parameters I randomly selected from the total set of

I = (0.1, 0.15, 0.3, 0.4, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 
0.53, 0.6, 0.7, 0.85, 0.9).

The duration of presentation of each visual stimu-
lus was also randomly varied within 0.8–1.2 s. The
total experimental cycle for each participant consisted
of 15 sessions and lasted for about 25 min. Then, the
initial signals were filtered in a 5–30 Hz band to
remove low-frequency artifacts and high-frequency
noise. The remaining undesired interferences related
to heartbeats, breathing, eye movements, and blinking
were removed using the temporally extended signal-
space separation (tSSS) method [15].

Upon carrying out experiments and accumulating
the experimental database, the second stage began
that was aimed directly at the classification of states of
the brain neural network using MEG data and the
ANN apparatus. In this work, we applied the ANN
architecture design of multilayer perceptron (MLP)
[16], which is most widely used for the classification
and recognition of patterns. The MLP has a relatively
simple architecture representing a neural network of
forward propagation, in which informative signal X
(fed into the input layer) sequentially propagates over
layers of the neural network toward the output layer,
where output signal Y is formed.
TEC
It should be noted that we are describing an instan-
taneous brain state (event) at time moment tj using the
N-dimensional vector

which contains the values of signals from N MEG
channels measured at this moment. Note that the vec-
tor dimensionality is N = 102, since the most informa-
tive signals are obtained from 102 MEG channels cor-
responding to magnetometers.

Figure 2a shows the neural-network architecture
with MLP design used in this work. Since the problem
setup stipulates the classification of only two classes of
brain states, which correspond to the perception of
left-oriented cube projection (class “0”) and right-ori-
ented cube projection (class “1”), the output layer
consists of a single neuron forming the output signal Y.
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Fig. 3. Response of a taught multilayer ANN to 1-s-long
MEG segments after presentation of an ambiguous Necker
cube with visible rib contrast I = (a) 0.1, (b) 0.5, and
(c) 0.9; (d) plot of perception measure A(I) averaged over
all experimental sessions.

(c)

(b)

(a)

(d)

1.0

0.8

0.6

0.4

0.2

0

Y(
t)

1.0

0.8

0.6

0.4

0.2

0

Y(
t)

1.0

1.0

0.8

0.6

0.4

0.2

12

8

4

0

0

0.8

0.90.80.70.60.50.40.30.20.1

I

0.6
t, s

0.40.20

Y(
t)

A(
I)
Every layer in this ANN transforms informative
input signal x according to the following relation:

where u is the output vector, x is the input vector, W is
the weight matrix of links between input elements and
neurons of the given layer, b is the vector of displace-
ment weights, and f(x) is the logistic neuron activation
function defined as

The ANN was taught to classify the states of brain
neural ensemble through optimization of the weights
of links and displacements by means of minimization
of the rms error using the Levenberg–Marquardt algo-
rithm [16]. For this purpose, a teaching sample set
was prepared in the form of 0.5-s-long segments of
20 MEG signals corresponding to the perception of
Necker cubes with clearly pronounced left- and right-
oriented cube projections (I = 0.1 and 0.9, respec-
tively). The ANN testing set included the remaining
ten MEG records. With allowance for the resolution of
signal records on the MEG setup employed, the

teaching set contained 104 events, while the testing set

contained 5 × 103 events. The teaching session and
subsequent testing of ANN showed that the classifica-
tion accuracy was on the average 86% (Fig. 2b).

Figure 3 shows the results of applying the well-
taught ANN to the classification of states of the brain
neural ensemble for MEG records of perception of the
bistable Necker cube. These data have the form of typ-
ical ANN Y(t) curves observed in response to the pre-
sentation of a sequence of 1-s-long MEG record seg-
ments X(t) after demonstrating bistable visual stimuli
with various degrees of ambiguity to a participant. As
can be seen, in response to the presentation of rather
clear images of the Necker cube (Figs. 3a and 3c), the
participant’s brain neural ensemble converges to stable
perception of the visual stimulus after a short transient
period of 0.2–0.3 s. It is evident that this stable per-
ception corresponds to perception of the Necker cube
as associated with more contrast ribs: state “0” in case
of I = 1 and state “1” in case of I = 0.9. In contrast, the
presentation of a visual stimulus with the maximum
degree of uncertainty leads to frequent switching
between the states of the brain corresponding to alter-
nating perception of the bistable visual stimulus.

In addition, we have also estimated the ability of
participants to interpret the Necker cube orientation
based on perception of the clearer ribs (Fig. 3d). For
this purpose, we have introduced perception measure A
defined as

where N0(I) is the number of brain states (events) clas-
sified by the ANN to “0” and N1(I) is the number of
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events classified by the ANN to “1”; the N0(I) and
N1(I) values are averaged over all experimental ses-
sions. As can be seen from Fig. 3d, the participant is
capable of unambiguously interpreting visual stimuli
with clearly pronounced ribs, while more probably
classifying the images to left-oriented cubes. It is
important to notice the presence of a central peak on
the A(I) curve at I = 0.48. The peak shift to left from
the middle may be related to a specific feature (habit)
of perception in left-to-right reading human beings
[17]. For this peculiarity of perception, a left-oriented
cube sets the initial conditions and, hence, predomi-
nates. Another possible mechanism (also not
excluded) of this behavior is related to the leading-eye
effect [18]. Apparently, the dominating left eye can
increase the probability of left-hand interpretation of
ambiguous images. A final judgment as to the mecha-
nism of this behavior requires further investigation.

In concluding, this work was devoted to ANN-
based diagnostics of brain neural-ensemble states
during perception of a bistable visual stimulus taking
8
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the form of a Necker cube. It is established that ANN
models can be successfully used to classify the brain
states corresponding to different interpretations of
bistable images. In addition, the transition to a stable
state of the neural ensemble was revealed after percep-
tion of the Necker-cube images with clear rib contrast,
whereas the brain neural network upon the observa-
tion of ambiguous images exhibited regular switching
between two states. The obtained results and proposed
approaches may be of interest both for further funda-
mental investigations of the mechanisms of human
perception and for the practical implementation of
described methods in new brain–computer systems
developing human cognitive properties.
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