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Abstract
Weconsider competition between layers in adaptivemultiplex networks of phase oscillators, where
adaptation principles (which cause intra-layer topology evolution) are inspired by real world
homophily and homeostasis phenomena. Ourmodel yields the emergence of both scale-free
topologies andmeso-scale structures in the layers, for an appropriate choice of the control parameters.
We further report that the growth of the number of interacting layers leads to a decrease of the global
order, due to inter-layer structural competition. However, the increase of the system’s scale can effect
local synchronization between neighboring (or strongly coupled)nodes. Such unforeseen phenomena
is connectedwith the nature of the competitivemechanism, which implies the rivalry for optimal
structurewithin thewhole system, a situation occurring in a variety of natural systems.

1. Introduction

Since the beginning of complex networks theory themainmotivation of the researchers was the aim at
describing processes that take place in the real world systems [1]. As always in science, new ideas and approaches
emerged as a consequence of the need of amore accurate correspondence between results frommodels and real
data. This is whymore andmore attention is currently paid tomulti-layer networks [2], as they very elegantly
furnish a representation of systemswheremultiple relations exist between networking elements.

In particular,multiplex networks (the sub-class ofmulti-layer networks where nodes are the same on all
layers) found applications in technological [3–5], biological[6], and social systems [7, 8], as well as in human
brain, artificial intelligence and robotics [9, 10].Multiplex networks are furthermore useful tools for the analysis
of climatological data, e.g. to represent and investigate the topology of statistical relationships between the fields
of distinct climatological variables [11]. In [12], four kinds of immunization strategies formultiplex networks
are proposed to describe the spread of diseases in the real world, and the effectiveness of those strategies on
different types of topologies is investigated. Usingmultiplex networks is also appropriate for describing various
transportation networks: [13] considers the influence of the topology of each network layer on the emergence of
structural features in thewhole network using the European air transportation network, where each layer
represents a commercial airline. Kurant et al [14] used a layeredmodel to study the load distribution in three
transportation systems, where the lower layer is the physical infrastructure and the upper layer represents the
traffic flows.Urban bus-transport and railway systems can bemapped in two spaces, where the nodes represents
a bus stop or a railway station [15]. At the same time, different levels of country organization can be presented in
amultiplex framework: [16] reveals the features of (and interactions between) spatially independent and
spatially distributed networks bymultiplexing the administrative structure and geo-population relationships of
a given country.
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On the other hand, research on collective dynamics inmultiplex networks concentrated so far on
synchronization processes between the network’s layers, as emergence of synchronized states plays a significant
role inmany natural phenomena [2, 17, 18]. Furthermore, competition between layers is ubiquitous in real
world networks, e.g. in urbanmobile networks, and in neuroscience when describing the processes occurring
both in local neuron networks and during the interaction between different parts of the brain [19–21], in
particular interactions between dynamical timescales in the neural network [22]. In this paper we study how the
competition between network layers can influence the structural and dynamical features ofmultiplex networks.

Despite some obvious differences among them, real world networks feature a certain number of similar
properties [23], e.g. a power-law distribution of the connectionweights and a strongmodularity, i.e. the
presence of structures at ameso-scopic scale. The emergence of these structural and dynamical features can be
explained as a consequence of a self-organization processes involving structure-dynamics adaptation of two
fundamental principles [24]: (a) the connections between nodeswhich have a similar (synchronized) behavior,
have a trend to be enhanced; (b) the available resources for each node to sustain its connectionswith other
elements of the network are limited. Thefirst principle is well-known under the terms of homophily [7, 25] or
Hebbian learning [26, 27], and the second onemodels what is called homeostasis [28].Wewill show that the
competition, balance, and trade-off between these twomechanisms are the key ingredients to describe intra-
layer pattern formation in adaptivemultiplex networks.

To construct a consistent presentation, the paper is divided into several sections. Section 2 contains a
specification of themathematicalmodel under study, including the description of the adaptive processes that we
consider for the evolution of themultiplex network. Section 3 presents the obtained results, specified in the case
of a two-layer network (section 3.1), wherewe give a good sight on how the network topology changes in
response to such competition process, and describes how the size of the system effects its structural and
dynamical properties (section 3.2). Section 4 concentrates on some analytical results, and the over all obtained
scenarios are discussed in the conclusive section.

2.Model under study

Themain goal of the current study is understanding how the competition between network’s layers can reshape
their topology in the presence of homophily and homeostasis.We use theKuramotomodel, which is awell
proved paradigm for describing various forms of collective dynamics in a variety of physical, biological, chemical
and social systems. Real-life systems have been represented as networks of coupled phase oscillators in studies of
synchronization phenomena [29–35].We here aim at showing that two key features of real world networks (a
scale-free distribution of theweights, and the formation ofmeso-scale structures) are the results of self-
organization under the presence of the above-mentionedmechanisms, homophily, and homeostasis.

We considerM layers, andN oscillators (nodes) on each layer. Each oscillator i (i= 1...N) on the layer l
(l= 1...M) is characterized by a natural frequencyωi (equal for all layers, and in this sense one speaks of a
multiplex network) and by a phase i

lj (whichmay, instead, vary from layer to layer), and interacts with all other
nodes in the lth layer. The phase dynamics is ruled by
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where w tij
l ( ) stands for theweight of the connection between nodes i and j on layer l, andλ is the coupling

strength. At the same time, theweights are here considered as co-evolving quantities, which follow (for each pair
i, j of nodes and in each layer) the equation:
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where Ni
l is the neighborhood of node i on layer l, i.e. the set of indices which denote the nodes connected to

node i on layer l.
The time-dependent parameters p tij

l ( ) are themeasures of phase coherence between the nodes i and j on

layer l averaged over the time interval [t−T, t], which are described by the following equation:
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withT being a characteristic adaptation time. To implement the homeostatic property in ourmodel we set the
total weight of all incoming connections of each node in each layer to be a constant value over all times. Initially,
theweights are randomly assigned andnormalized as
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whereas all phases, i
lj , and natural frequencies,ωi, are chosen randomly in the interval [−π;π].

It should be noted that the second and the third terms in the right side of equation (2) reflect adaptive inter-
layer interactions and competitive interactions between the layers for optimal topology, respectively. The
homophily property is accounted for by the first term in the right side of equation (2): the high degree of phase
coherence between the nodes i and j on layer l enhances the strength of their inter-layer connection. At the same
time, the second term in the equation reflects homeostasis in that it subtracts the interaction between all over
neighboring nodes in the layer l. Finally, the third term is responsible for the competitive interaction between the
layers of the network for optimal topology: the increase of synchrony between nodes i and j in the layer l leads to a
decrease of theweight between the corresponding nodes in other layers. A schematic representation of these
adaptivemechanisms is reported infigure 1.

3.Numerical results

In this sectionwe present numerical results from simulations of themodel described above, with the aimof
describing how structural and dynamical features emerge as functions of our two key parameters: the coupling
strengthλ, and the adaptation timeT. The section is organized in two subsections: section3.1 depicts the case of
a two layers network, while section3.2 examines how such emergent properties depend on the size of the
network, i.e. on the number of interacting layers.

In order tomonitor the system’s features, it is useful to rely on the calculation of three order parameters. The
first is the time-dependentmeasure of the degree of global synchronization:

r
MN

1
e . 5g

l

M

i

N
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1 1
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låå= j

= =
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The second parameter quantifies the average value of the order parameters inside the networks layers:

r
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Finally, the average synchronization between connected nodes in the graph can be defined as the local order
parameter, and ismeasured as:

Figure 1. Schematic representation of themodel.Within each layer, the effect of homophily is reflected by the growth of theweight of
a connectionwhenever the connected nodes are synchronized (see the upper, blue colored, graph), whereas homeostasis implies
competition among layers and results in the decrease of theweight of a given connectionwhen other connections of the same node in
the same layer, or the same connection in one of the other layers (see the lower, red colored, graph), are enhanced.
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= j j-∣ ∣[ ( ) ( )] is the pairwise order parameter between connected units.

3.1. Two layers network
Let usfirst concentrate on the caseM=2, andN=500 oscillators on each of the two layers. Initially (i.e. for tä
[0, 500])we evolve the phases of oscillators bymeans of equation (2)withweightswijfixed on their initial
conditions, i.e. we let the systemunfold without adaptation. Then (i.e. at t=500 time units), the homophily and
homeostasis terms are activated, andwe let the systemprogress for the next 2,000 time units with the co-evolving
weights of equation (3). Towarrant attainment of the network topology to its asymptotic state, we alsomonitor
the total change in the adjacencymatrix over one unit step of integration:

M
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All order parameters are calculated starting from the time atwhich γ<10−4, and their values are accumulated
(and averaged) over the next 500 time units.

The three panels offigure 2 report the global, intra-layer and local order parameters in the (T,λ) parameter
space. In thefirst panel, one notices that for low coupling strengths (below the critical value for global
synchronization) the adaptivemechanism enhances global order in the network, in that the increase of the
adaptation time causes the growth of rg. Further, the second panel indicates that the layer order parameter r
growswithλ faster than rg. The areas where the calculated values of rg and r become significantly different
correspond to an asynchronous behavior between nodeswith same index located on different layers. Finally, one
notices that rlink is strongly dependent onT, and the growth of adaptation time generically enhances
synchronization of neighboring nodes. Such a feature is the hallmark of the emergence ofmodular
synchronization, i.e. the network comes out to be segregated into distinct clusters.

In order to graspmore details on the network’s adaptive dynamics, we concentrate the attention on three
specific configurations,marked by the pointsA=(0.2, 20),B=(1.20, 45) andC=(2.80, 55) infigure 2. As
weights are evolving, the inequality in the two layers’ topology can be quantified by thefinal (i.e. at the last
calculation time) total difference between their adjacencymatrices:

w w w . 8ij
d

i

N

j

N

ij ij
1 1

1 2å å= -
= =

∣ ∣ ( )

PointA corresponds to w 81.15ij
d = . The small value ofλ determines aweakly synchronized state of both

layers. Taking into account the small value of wij
d, one can conclude that at this stage the layers retain a similar

topology. The distributions of weights of the links are shown infigure 3(a). The formof the distribution indicates
that the network features a scale-free topology, and only neighboring nodes are in a synchronous state.

A significant difference in the values of the global and layer order parameters occurs at the pointB (rg∼0.2,
r∼0.4 and rlink∼0.84). Unlike the previous situation, the network structure shows here the presence of large
synchronized clusters, distinct in each layer, which determine a larger value of w 218.48ij

d = .
Finally, the third region (pointC) is characterized by large values of all order parameters, whichmark the

emergence of an almost fully synchronized state. The difference between connectionweights also reaches a large
value w 324.61ij

d = . The distribution of weights, as infirst case, is notmuch different from layer to layer.

Figure 2.The global order parameter (a), the layer order parameter (b) and the local order parameter (c) as functions of the coupling
strengthλ and the adaptation timeT. Points labeledwithA,B andC correspond to three particular system’s configurations that will
receive specific attention in our paper.
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However, atmoderate values ofλ andT the intra-layer order parameter exceeds the global order, and therefore
there is evidence of formation of different intra-layer topologies as a result of strengthening the connections
inside the layer.

Figure 4 reports the visualizations of each layer’s topology at the pointsA,B andC. In the configurationA,
the system selects a inhomogeneous topology, withweakly pronounced structural clusters. This topology has a
resemblance with a power-lawweight distribution, and can be considered as the closest to real systems.When
considering configurationB, a stronglymodular (clustered) structure begins to appear with growing ofλ andT.
Figure 4 allows to visualize the inequality in the layers’ topologies: the structure of the second layer ismuchmore
modular. Finally, when control parameters approach a critical value (like close to configurationC), clusters
begin to disintegrate, and the network returns to a state similar to that of configurationA, but this time the
weight distribution strongly deviates from a power-law, and becomesmuchmore homogeneous.

3.2.Multilayered networks
It is typical for real systems to havemore than two types of relations between their constituent units. Therefore, it
is useful to examine the case ofmore than two layers. To this purpose, we letM vary fromM=1 toM=20, and
examine how the in the number of layers influences the behavior of the system for the three configurations of
control parameters whichwere discussed in the previous section.

Figure 5 presents the order parameters versus the number of layers in the configurationsA,B andC. In all
configurations, the global order (figure 5(a)) has a tendency to decrease when increasing the size of the system,
indicating aweakening of synchronizationwith the growth ofM. However, its dynamics strongly varies in

Figure 3.Weight distribution P(wij) calculated on the 1st (left column) and 2nd (right column) layer, for different values of the
coupling parameters: (a)λ=0.2,T=20 (pointA infigure 2); (b)λ=1.20,T=45 (pointB infigure 2); (c)λ=2.80,T=55 (point
C in figure 2).
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different configurations: while atA one observes an almost linear dependence, atB andC a drastic decrease is
observed already at the transition from a one layer to a four-layersmultiplex. These results suggest that the
effects of competitivemechanisms between layers becomemore andmore pronouncedwith both the increase of
intra-layer synchronization and the size of the system. At the same time, the intra-layer order parameter (see
figure 5(b)) practically does not depend on the number of layers in the network, and only displays different
values at pointsA,B andC.

Themost unexpected result concerns the local order parameter, rlink, when averaged over layers (see
figure 5(c)). Despite the stability of intra-layer order, indeed, one sees that increasing the number of layers results
in a considerable decrease of the synchronization between neighboring nodes, i.e. increasing the size of network
depletes synchronization at the local scale, andmakes the competitivemechanismsmore expressed.

It is important also to elucidate the impact of the intra-layer connections on the formation of different
topologies among the layers. Figure 6(a) presents the adjacencymatrices of afive-layer networkwith nodes
sorted by their ranking value in the second smallest eigenvector of the 1st layer’s Laplacianmatrix. Such an
eigenvector, also known as Fiedler’s vector, is connected indeedwith network’smodularity. Therefore, by
calculating the second smallest eigenvector, one can encapsulate the partition of each of the five-layers of the
network (presented onfigure 6(b)), and the adjacencymatrices give a representation on the structure of
connections within the clusters that are formed.

The plots shown infigure 6 illustrate the network structure for the configurationB, which features
prominentmodular effects. One can notice the presence of communities on each layer, which is demonstrated

Figure 4.Visualization of the 1st (first row) and 2nd (second row) layer topologies, for different coupling parameters corresponding to
pointA infigure 2,λ=0.2,T=20 (left column); pointB,λ=1.20,T=45 (middle column); and pointC;λ=2.80,T=55 (right
column). The color of the nodes corresponds to the value of their eigenvector centrality (see color-bar on the right of thefigure,
normalized in the range [0:1]).

Figure 5.Order parameters rg (left panel), r (middle panel) and rlink (right panel) versus the number of layersM for configurationsA
(violet curves),B (green curves) andC (blue curves).
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onfigure 6(b). The second smallest eigenvector properties are quite similar, but differences between the
communities in different layers are observed.

4. Analytical treatment

Let us prove our numerical results in the framework of analytical treatment of the network behavior. For this
purposewe expand the approach proposed in [23] for analytical estimation of the networkweight distribution in
the uncoupled limit ( 0l  ) to the case ofmulti-layer network. In that case, the phase of each network node
evolves as t t 0i

l
i i

lj w j= +( ) ( ), where 0i
lj ( ) is the initial phase of ith element of lth layer. Substituting this

evolution rule into equation (3), one obtains that the correlation between the phases of the ith and the jth
element obeys the equation p T L1 1ij

l
ij ij

2 2= + D = D( ) in the uncoupled limit, whereΔij=ωi−ωj.

Let us analyze the entire systemby taking as reference frequency that of the ith,ωinode on the strength of
Since initially all other natural frequenciesωj are uniformly distributed from−π toπ, thenΔj=ωj−ωi are also
independent identically distributed (i.i.d.) randomvariables, whose conditional distribution p j iwDD( ∣ ) is
uniform in the range [−π−ωi;π−ωi]. Thus, all L jD( ) (or simply Lj) are also i.i.d., and their probability
distribution function (PDF) conditioned onωi is
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In accordance with equation (2), theweights are asymptotically stable values. Taking into account both
global intra-layer interaction andmultiplex inter-layer influence between the elements of the network, one can
derive the equation for theweights in the following form

w L ML L .ij
l

j j
k

N

k
1

å= +
=

⎛
⎝⎜

⎞
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Let us further denote L Gk
N

k1å == . According to the properties of the PDF for Lj [23], one can apply the
central limit theorem toG, andfinds that it converges to aGaussian randomvariable, whose expectation value
and variance are (in the limit of largeN) G N Ljá ñ = á ñand var[G]=N var[Lj], respectively. Hence, following

[23], one can obtain the analytical expression for the distribution of wij
j at 0l  as:

Figure 6. (a)Adjacencymatrices of each of five-layers of the network sorted using the node ranking in Fiedler’s vector of the first layer.
(b) Sorted values of Fiedler’s vector for each layer. Number of nodesN=500, number of layersM=5. The values of the control
parameters are corresponding to pointB:λ=1.20,T=45.
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where p •G ( ) is a Gaussian distributionwith expectation value Gá ñand variance var[G].
Figure 7 shows the comparison of theweight distribution fromnumerical simulations at negligibly small

coupling strengthλ=10−4 (T=100 andM=2)with the analytical curve from equation (10). One can see
that equation (10) gives indeed a rather good approximation of theweight distribution also for very small values
ofλ. In case of largeλ clustering takes place in the network under study. Thus, the appearance of well-
pronounced peak in networkweights distribution indicates that network behavior is is no longer subject to the
analyticalmodel.

5. Conclusion

In summary, we have considered inter-layer competitive phenomena in an adaptivemultiplex network of phase
oscillators with topology of connections between the units established in accordance withmechanisms of
homeostasis and homophily.We used themodel based onKuramoto paradigm, and examined the effects of
coupling strength, adaptation time and size of the network at different stages and configurations.

In the process of adaptation, themodel acquires topological properties which are common for a rather vast
class of real world networks, such as scale-free distribution of theweights, and presence of cluster structures at a
meso-scopic scale. These properties emerge only formoderate values of the control parameters (the coupling
strengthλ, and the adaptation timeT), in connectionwith partial synchronization and yet rather high values of
local order parameter.We also revealed that the increase in the number of interacting layers leads to a decrease of
global order due to inter-layer structural competition, while the average intra-layer order remains the same.

Our resultsmay pave theway to understand some typical phenomena of natural systems, like the rivalry of
different layers of interactions for optimal structurewithin awhole system.
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