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We consider competition between layers in adaptive multiplex networks of phase oscillators, where
adaptation principles (which cause intra-layer topology evolution) are inspired by real world
homophily and homeostasis phenomena. Our model yields the emergence of both scale-free
topologies and meso-scale structures in the layers, for an appropriate choice of the control parameters.
We further report that the growth of the number of interacting layers leads to a decrease of the global
order, due to inter-layer structural competition. However, the increase of the system’s scale can effect
local synchronization between neighboring (or strongly coupled) nodes. Such unforeseen phenomena
is connected with the nature of the competitive mechanism, which implies the rivalry for optimal
structure within the whole system, a situation occurring in a variety of natural systems.

1. Introduction

Since the beginning of complex networks theory the main motivation of the researchers was the aim at
describing processes that take place in the real world systems [1]. As always in science, new ideas and approaches
emerged as a consequence of the need of a more accurate correspondence between results from models and real
data. This is why more and more attention is currently paid to multi-layer networks [2], as they very elegantly
furnish a representation of systems where multiple relations exist between networking elements.

In particular, multiplex networks (the sub-class of multi-layer networks where nodes are the same on all
layers) found applications in technological [3-5], biological[6], and social systems [7, 8], as well as in human
brain, artificial intelligence and robotics [9, 10]. Multiplex networks are furthermore useful tools for the analysis
of climatological data, e.g. to represent and investigate the topology of statistical relationships between the fields
of distinct climatological variables [11]. In [ 12], four kinds of immunization strategies for multiplex networks
are proposed to describe the spread of diseases in the real world, and the effectiveness of those strategies on
different types of topologies is investigated. Using multiplex networks is also appropriate for describing various
transportation networks: [13] considers the influence of the topology of each network layer on the emergence of
structural features in the whole network using the European air transportation network, where each layer
represents a commercial airline. Kurant et al [ 14] used a layered model to study the load distribution in three
transportation systems, where the lower layer is the physical infrastructure and the upper layer represents the
traffic flows. Urban bus-transport and railway systems can be mapped in two spaces, where the nodes represents
abus stop or arailway station [15]. At the same time, different levels of country organization can be presented in
amultiplex framework: [16] reveals the features of (and interactions between) spatially independent and
spatially distributed networks by multiplexing the administrative structure and geo-population relationships of
agiven country.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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On the other hand, research on collective dynamics in multiplex networks concentrated so far on
synchronization processes between the network’s layers, as emergence of synchronized states plays a significant
role in many natural phenomena [2, 17, 18]. Furthermore, competition between layers is ubiquitous in real
world networks, e.g. in urban mobile networks, and in neuroscience when describing the processes occurring
both in local neuron networks and during the interaction between different parts of the brain [19-21], in
particular interactions between dynamical timescales in the neural network [22]. In this paper we study how the
competition between network layers can influence the structural and dynamical features of multiplex networks.

Despite some obvious differences among them, real world networks feature a certain number of similar
properties [23], e.g. a power-law distribution of the connection weights and a strong modularity, i.e. the
presence of structures at a meso-scopic scale. The emergence of these structural and dynamical features can be
explained as a consequence of a self-organization processes involving structure-dynamics adaptation of two
fundamental principles [24]: (a) the connections between nodes which have a similar (synchronized) behavior,
have a trend to be enhanced; (b) the available resources for each node to sustain its connections with other
elements of the network are limited. The first principle is well-known under the terms of homophily [7, 25] or
Hebbian learning [26, 27], and the second one models what is called homeostasis [28]. We will show that the
competition, balance, and trade-off between these two mechanisms are the key ingredients to describe intra-
layer pattern formation in adaptive multiplex networks.

To construct a consistent presentation, the paper is divided into several sections. Section 2 contains a
specification of the mathematical model under study, including the description of the adaptive processes that we
consider for the evolution of the multiplex network. Section 3 presents the obtained results, specified in the case
of atwo-layer network (section 3.1), where we give a good sight on how the network topology changes in
response to such competition process, and describes how the size of the system effects its structural and
dynamical properties (section 3.2). Section 4 concentrates on some analytical results, and the over all obtained
scenarios are discussed in the conclusive section.

2.Model under study

The main goal of the current study is understanding how the competition between network’s layers can reshape
their topology in the presence of homophily and homeostasis. We use the Kuramoto model, which is a well
proved paradigm for describing various forms of collective dynamics in a variety of physical, biological, chemical
and social systems. Real-life systems have been represented as networks of coupled phase oscillators in studies of
synchronization phenomena [29-35]. We here aim at showing that two key features of real world networks (a
scale-free distribution of the weights, and the formation of meso-scale structures) are the results of self-
organization under the presence of the above-mentioned mechanisms, homophily, and homeostasis.

We consider M layers, and N oscillators (nodes) on each layer. Each oscillator i ( = 1... N) on the layer /
(I=1... M) is characterized by a natural frequency w; (equal for all layers, and in this sense one speaks of a
multiplex network) and by a phase <pi. (which may, instead, vary from layer to layer), and interacts with all other
nodes in the /th layer. The phase dynamics is ruled by

. N
j=1

where wl-; (t) stands for the weight of the connection between nodes i and j on layer /, and A is the coupling
strength. At the same time, the weights are here considered as co-evolving quantities, which follow (for each pair
i, jof nodes and in each layer) the equation:

Wit = i) — | T sl wé—[ R?(f)]wfr @
k=1

keN!

where N is the neighborhood of node i on layer , i.e. the set of indices which denote the nodes connected to
nodeion layer .
The time-dependent parameters pl.; (t) are the measures of phase coherence between the nodes iand j on

layer laveraged over the time interval [+ — T, ], which are described by the following equation:
L) = 1 ‘ f ' elli =2l gr |, 3)
v T |Je-T

with T'being a characteristic adaptation time. To implement the homeostatic property in our model we set the
total weight of all incoming connections of each node in each layer to be a constant value over all times. Initially,
the weights are randomly assigned and normalized as
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Figure 1. Schematic representation of the model. Within each layer, the effect of homophily is reflected by the growth of the weight of
a connection whenever the connected nodes are synchronized (see the upper, blue colored, graph), whereas homeostasis implies
competition among layers and results in the decrease of the weight of a given connection when other connections of the same node in
the same layer, or the same connection in one of the other layers (see the lower, red colored, graph), are enhanced.

N
Swi=1 Vi, (4)

=i

whereas all phases, <p§, and natural frequencies, w;, are chosen randomly in the interval [—; 7].

It should be noted that the second and the third terms in the right side of equation (2) reflect adaptive inter-
layer interactions and competitive interactions between the layers for optimal topology, respectively. The
homophily property is accounted for by the first term in the right side of equation (2): the high degree of phase
coherence between the nodes 7and j on layer l enhances the strength of their inter-layer connection. At the same
time, the second term in the equation reflects homeostasis in that it subtracts the interaction between all over
neighboring nodes in the layer I. Finally, the third term is responsible for the competitive interaction between the
layers of the network for optimal topology: the increase of synchrony between nodes i and j in the layer /leadsto a
decrease of the weight between the corresponding nodes in other layers. A schematic representation of these
adaptive mechanisms is reported in figure 1.

3. Numerical results

In this section we present numerical results from simulations of the model described above, with the aim of
describing how structural and dynamical features emerge as functions of our two key parameters: the coupling
strength A, and the adaptation time 7. The section is organized in two subsections: section 3.1 depicts the case of
atwo layers network, while section 3.2 examines how such emergent properties depend on the size of the
network, i.e. on the number of interacting layers.

In order to monitor the system’s features, it is useful to rely on the calculation of three order parameters. The
first is the time-dependent measure of the degree of global synchronization:

1 %i ikt
Ty = el | (5)
MN |35
The second parameter quantifies the average value of the order parameters inside the networks layers:
r= e¥il) | (6)
MN 5|5

Finally, the average synchronization between connected nodes in the graph can be defined as the local order
parameter, and is measured as:
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Figure 2. The global order parameter (a), the layer order parameter (b) and the local order parameter (c) as functions of the coupling
strength A\ and the adaptation time T. Points labeled with A, Band C correspond to three particular system’s configurations that will
receive specific attention in our paper.

Tlink = ——— Z Z Z W;] 1]: (7)

NMl 1i=1 j=i

Tt ! . . . .
where ré- = |ell¥i®=¥;0]|is the pairwise order parameter between connected units.

3.1. Two layers network

Let us first concentrate on the case M = 2,and N = 500 oscillators on each of the two layers. Initially (i.e. for t €
[0, 500]) we evolve the phases of oscillators by means of equation (2) with weights w;; fixed on their initial
conditions, i.e. we let the system unfold without adaptation. Then (i.e. at t = 500 time units), the homophily and
homeostasis terms are activated, and we let the system progress for the next 2,000 time units with the co-evolving
weights of equation (3). To warrant attainment of the network topology to its asymptotic state, we also monitor
the total change in the adjacency matrix over one unit step of integration:

1 M

N
v==3 [>Iwi®) — wit — DP.
M5 i,j

All order parameters are calculated starting from the time at which v < 10™* and their values are accumulated
(and averaged) over the next 500 time units.

The three panels of figure 2 report the global, intra-layer and local order parameters in the (T, \) parameter
space. In the first panel, one notices that for low coupling strengths (below the critical value for global
synchronization) the adaptive mechanism enhances global order in the network, in that the increase of the
adaptation time causes the growth of 7,. Further, the second panel indicates that the layer order parameter r
grows with A faster than r,. The areas where the calculated values of r,and r become significantly different
correspond to an asynchronous behavior between nodes with same index located on different layers. Finally, one
notices that rj;, is strongly dependent on T, and the growth of adaptation time generically enhances
synchronization of neighboring nodes. Such a feature is the hallmark of the emergence of modular
synchronization, i.e. the network comes out to be segregated into distinct clusters.

In order to grasp more details on the network’s adaptive dynamics, we concentrate the attention on three
specific configurations, marked by the points A = (0.2, 20), B = (1.20,45) and C = (2.80, 55) in figure 2. As
weights are evolving, the inequality in the two layers’ topology can be quantified by the final (i.e. at the last
calculation time) total difference between their adjacency matrices:

Z Z |W1] z] (8)

i=1 j=1

Point A corresponds to Wi? = 81.15. The small value of A determines a weakly synchronized state of both

layers. Taking into account the small value of Wg ,one can conclude that at this stage the layers retain a similar
topology. The distributions of weights of the links are shown in figure 3(a). The form of the distribution indicates
that the network features a scale-free topology, and only neighboring nodes are in a synchronous state.
Assignificant difference in the values of the global and layer order parameters occurs at the point B (r, ~ 0.2,
r ~ 0.4and rj;, ~ 0.84). Unlike the previous situation, the network structure shows here the presence of large
synchronized clusters, distinct in each layer, which determine a larger value of w, ] = 218.48.
Finally, the third region (point C) is characterized by large values of all order parameters, which mark the
emergence of an almost fully synchronized state. The difference between connection weights also reaches alarge

value W = 324.61. The distribution of weights, as in first case, is not much different from layer to layer.
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Figure 3. Weight distribution P(w;) calculated on the 1st (left column) and 2nd (right column) layer, for different values of the
coupling parameters: (a) A = 0.2, T = 20 (point A in figure 2); (b) A = 1.20, T = 45 (point Bin figure 2); (c) A = 2.80, T = 55 (point
Cin figure 2).

However, at moderate values of A and T'the intra-layer order parameter exceeds the global order, and therefore
there is evidence of formation of different intra-layer topologies as a result of strengthening the connections
inside the layer.
Figure 4 reports the visualizations of each layer’s topology at the points A, Band C. In the configuration A,

the system selects a inhomogeneous topology, with weakly pronounced structural clusters. This topology has a
resemblance with a power-law weight distribution, and can be considered as the closest to real systems. When
considering configuration B, a strongly modular (clustered) structure begins to appear with growing of Aand T.
Figure 4 allows to visualize the inequality in the layers’ topologies: the structure of the second layer is much more
modular. Finally, when control parameters approach a critical value (like close to configuration C), clusters
begin to disintegrate, and the network returns to a state similar to that of configuration A, but this time the
weight distribution strongly deviates from a power-law, and becomes much more homogeneous.

3.2. Multilayered networks

Itis typical for real systems to have more than two types of relations between their constituent units. Therefore, it
is useful to examine the case of more than two layers. To this purpose, we let M vary from M = 1to M = 20, and
examine how the in the number of layers influences the behavior of the system for the three configurations of
control parameters which were discussed in the previous section.

Figure 5 presents the order parameters versus the number of layers in the configurations A, Band C. In all
configurations, the global order (figure 5(a)) has a tendency to decrease when increasing the size of the system,
indicating a weakening of synchronization with the growth of M. However, its dynamics strongly varies in
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Figure 4. Visualization of the 1st (first row) and 2nd (second row) layer topologies, for different coupling parameters corresponding to
point A in figure 2, A = 0.2, T = 20 (left column); point B, A\ = 1.20, T = 45 (middle column); and point C; A = 2.80, T = 55 (right
column). The color of the nodes corresponds to the value of their eigenvector centrality (see color-bar on the right of the figure,
normalized in the range [0:1]).
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Figure 5. Order parameters 7, (left panel), r (middle panel) and ry; (right panel) versus the number of layers M for configurations A
(violet curves), B (green curves) and C (blue curves).

different configurations: while at A one observes an almost linear dependence, at Band Ca drastic decrease is
observed already at the transition from a one layer to a four-layers multiplex. These results suggest that the
effects of competitive mechanisms between layers become more and more pronounced with both the increase of
intra-layer synchronization and the size of the system. At the same time, the intra-layer order parameter (see
figure 5(b)) practically does not depend on the number oflayers in the network, and only displays different
values at points A, Band C.

The most unexpected result concerns the local order parameter, rj;,,, when averaged over layers (see
figure 5(¢)). Despite the stability of intra-layer order, indeed, one sees that increasing the number of layers results
in a considerable decrease of the synchronization between neighboring nodes, i.e. increasing the size of network
depletes synchronization at the local scale, and makes the competitive mechanisms more expressed.

Itis important also to elucidate the impact of the intra-layer connections on the formation of different
topologies among the layers. Figure 6(a) presents the adjacency matrices of a five-layer network with nodes
sorted by their ranking value in the second smallest eigenvector of the 1st layer’s Laplacian matrix. Such an
eigenvector, also known as Fiedler’s vector, is connected indeed with network’s modularity. Therefore, by
calculating the second smallest eigenvector, one can encapsulate the partition of each of the five-layers of the
network (presented on figure 6(b)), and the adjacency matrices give a representation on the structure of
connections within the clusters that are formed.

The plots shown in figure 6 illustrate the network structure for the configuration B, which features
prominent modular effects. One can notice the presence of communities on each layer, which is demonstrated
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Figure 6. (a) Adjacency matrices of each of five-layers of the network sorted using the node ranking in Fiedler’s vector of the first layer.
(b) Sorted values of Fiedler’s vector for each layer. Number of nodes N = 500, number of layers M = 5. The values of the control
parameters are corresponding to point B: A = 1.20, T = 45.

on figure 6(b). The second smallest eigenvector properties are quite similar, but differences between the
communities in different layers are observed.

4. Analytical treatment

Let us prove our numerical results in the framework of analytical treatment of the network behavior. For this
purpose we expand the approach proposed in [23] for analytical estimation of the network weight distribution in
the uncoupled limit (A — 0) to the case of multi-layer network. In that case, the phase of each network node
evolves as <p£ ) = wit + cpﬁ (0), where goi (0) is the initial phase of ith element of /th layer. Substituting this
evolution rule into equation (3), one obtains that the correlation between the phases of the ith and the jth
element obeys the equation pi]l. =1 / J1 + TzAizj = L(Aj) in the uncoupled limit, where A;; = w; — wj.

Let us analyze the entire system by taking as reference frequency that of the ith, w; node on the strength of
Since initially all other natural frequencies wjare uniformly distributed from —7 to 7, then A; = w; — w;arealso
independent identically distributed (i.i.d.) random variables, whose conditional distribution p, (Aj|w;)is
uniform in the range [-7 — wj ™ — w;]. Thus, all L(A)) (or simply L;) are also i.i.d., and their probability
distribution function (PDF) conditioned on wj is

1 1
pLjlwi) = ZTPA(AHWD I e
a5 27T|Lj T.1 — L; |
dA,
0, L > 1
2, Lim — |wi]) < L; <1
" ( lwil) < Lj ©)

I, L(m+ |wi) < Lj < L(m — |wi])’
0, Lj < L(m + |wil)

In accordance with equation (2), the weights are asymptotically stable values. Taking into account both
global intra-layer interaction and multiplex inter-layer influence between the elements of the network, one can
derive the equation for the weights in the following form

N
1
wy = Lj/(MLj + ZLkJ.
k=1

Let us further denote 8 | Ly = G. According to the properties of the PDF for L;[23], one can apply the
central limit theorem to G, and finds that it converges to a Gaussian random variable, whose expectation value
and variance are (in the limit of large N) (G) = N (L;) and var[G] = Nvar[L;], respectively. Hence, following

[23], one can obtain the analytical expression for the distribution of w,; at A — Oas:

7
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Figure 7. Weight distribution from a numerical simulation of a two-layer network (for T = 100 and A = 10~* blue dots), and
analytical curve obtained (in the uncoupled limit) from equation (10) (red solid line).

1 m 1 L]
PW(Wﬁ):Ef_7T dwifo dLjW_iJZ‘pL(lewi)

X pG((WL — M)lewi} (10)
L}

where p(+) is a Gaussian distribution with expectation value (G) and variance var[G].

Figure 7 shows the comparison of the weight distribution from numerical simulations at negligibly small
coupling strength A = 10™*(T = 100and M = 2) with the analytical curve from equation (10). One can see
that equation (10) gives indeed a rather good approximation of the weight distribution also for very small values
of \. In case of large A clustering takes place in the network under study. Thus, the appearance of well-
pronounced peak in network weights distribution indicates that network behavior is is no longer subject to the
analytical model.

5. Conclusion

In summary, we have considered inter-layer competitive phenomena in an adaptive multiplex network of phase
oscillators with topology of connections between the units established in accordance with mechanisms of
homeostasis and homophily. We used the model based on Kuramoto paradigm, and examined the effects of
coupling strength, adaptation time and size of the network at different stages and configurations.

In the process of adaptation, the model acquires topological properties which are common for a rather vast
class of real world networks, such as scale-free distribution of the weights, and presence of cluster structures ata
meso-scopic scale. These properties emerge only for moderate values of the control parameters (the coupling
strength ), and the adaptation time T), in connection with partial synchronization and yet rather high values of
local order parameter. We also revealed that the increase in the number of interacting layers leads to a decrease of
global order due to inter-layer structural competition, while the average intra-layer order remains the same.

Our results may pave the way to understand some typical phenomena of natural systems, like the rivalry of
different layers of interactions for optimal structure within a whole system.
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