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Abstract—We consider the task of recognition of fragments of multichannel electroencephalogram (EEG)
records corresponding to motions of the human arm and to mental representation of these motions. It is
shown that the problem of recognition can be solved by processing short EEG segments by the method of
f luctuation analysis. The obtained results suggest that f luctuation analysis can be used as an algorithm of the
digital signal processing in development of the neurointerface software.
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The problem of constructing brain–computer
interfaces (BCIs or neurointerfaces) has a long history,
but a breakthrough in this direction has been achieved
in the last two decades due to the development of
computing technologies and expansion of our knowl-
edge about brain functioning [1–6]. In particular, a
noninvasive BCI was proposed for patients with heavy
motor disabilities, which allowed them to control the
cursor motion on display screen [1]. Other original
BCIs provided communication means for totally par-
alyzed people based on the use of slow cortical poten-
tials for controlling an electronic spelling device [7]
and tools for controlling navigation and information
intentions of robots [8, 9] based on the analysis of
electrooculographic data and electroencephalogram
(EEG) records.

On the whole, BCIs are devices that allow people
to perform actions in the surrounding world by using
brain signals instead of muscular power. These tech-
nologies may be required in various fields, including
industry, health care, computer systems, etc. Neuro-
interfaces differ with respect to signal types and meth-
ods of their conversion into commands for controlling
external actuator devices. Most interesting are BCIs of
noninvasive type, which do not require electrodes
implanted in the brain. However, these BCIs need
using advanced methods of digital signal processing
for the recognition of mental intentions.

The main source of information for the develop-
ment of BCIs is provided by EEG signals, but their
analysis and recognition of characteristic features of
the electric activity of the brain is still a complicated
task [10–15]. The present work was aimed at studying

the possibility of recognizing real and imaginary
motions of the human arm by using EEG signals capa-
ble of providing noninvasive BCIs for various applica-
tions.

The experiments were performed in a group of ten
healthy volunteers. Multichannel EEGs were
recorded using an Encephalan electroencephalograph
in the standard 10–20 setting with 19 recording elec-
trodes at 250-Hz sampling rate. Each experiment
lasted for 30 min and included tasks of the two types:
(i) slowly bend the right arm up at the elbow and
(ii) imagine this motion. The onset of arm motion or
its mental representation was started by a sound signal,
after which the electric brain activity was recorded
for 3 s. This time interval included the motion and
subsequent short transient process.

The experimental data (EEG records) were pro-
cessed using the detrended fluctuation analysis (DFA)
[16–18] intended for the correlation analysis of non-
stationary processes. The DFA procedure involves the
following calculations:

1. Construction of a profile of signal x(k), k = 1, …
N (one-dimensional random walk):

(1)

where 〈x〉 is the mean signal value.
2. Segmentation of profile Y(i) into M nonoverlap-

ping segments of length n and determination of the
local trend Yn(i) by interpolating Y(i) within each seg-
ment. Instead of a piecewise-linear function used in
[17], it is possible to use a polynomial approximation.
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Fig. 1. Difference of scaling exponents α calculated from
the slope of logF vs. logn plots for (1) real arm motion,
(2) imaginary motion, and (3) background EEG record.
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Fig. 2. Difference of calculated scaling exponents α
between (1) real and imaginary motions and (2) between
imaginary motions and background EEG activity plotted
vs. EEG recording channel number k.
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3, Subtraction of the local trend and calculation of
root-mean-square (rms) f luctuations:

(2)

4. Repetition of calculations for variable segment
length n and analysis of the power law relation

(3)
where α is the DFA scaling exponent. On the double
logarithmic scale of logF versus logn, this exponent is
readily calculated by means of linear approximation.
The accuracy of calculations can be additionally
improved by segmentation in the forward and reverse
directions.

The calculated α values characterize correlations of
various types in the experimental data including anti-
correlated dynamics (α < 0.5 in the presence of alter-
nating large and small values of time series), power-
law correlations (0.5 < α < 1 for large values more fre-
quently following large ones and small values follow-
ing small ones), and correlated behavior (α > 1) that
can differ from the power-law statistics [17]. Station-
ary processes imply a relationship between exponent α
and quantities characterizing the power-law behavior
of the correlation function and spectral power density
[16].

At the initial stage of investigations, the task of
finding reliable differences between real and imagi-
nary motions was solved based on a thorough analysis
of experimental data for a single type of motion (slow
bending of right arm at the elbow). For this purpose,
F(n) data from an arbitrarily selected participant were
compared in different states corresponding to real
motion, imaginary representation, and background
brain activity. Figure 1 shows typical results demon-
strating clear differences in slopes within logn ∈ [1.4,
2.2]. Therefore, the states under consideration can be
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recognized using the DFA method. In order to con-
firm this, we have carried out statistical analysis of
repeated events (100 real motions, 100 imaginary rep-
resentations, and 100 segments of background activ-
ity) for channels of EEG recording. Data presented in
Fig. 2 confirm that these states are reliably distin-
guished. It is important to note that not only the real
motions can be distinguished from imaginary, but the
imaginary motions can also be distinguished from
background EEG pattern—which is even more
important for the creation of neurointerfaces. The
separation of signals was achieved in almost all chan-
nels. However, some channels were present in which
the differences were rather weakly pronounced or not
reliable. In this respect, it should be emphasized that
multichannel EEG recording is necessary for the rec-
ognition of motions with increased reliability.

Analysis of the results of investigation for the entire
group of volunteers confirmed the above conclusions.
According to these results, the separation of real and
imaginary motions in all 19 EEG channels was
achieved for four participants. For the other four per-
sons, the reliable separation was achieved in 17–
18 channels out of 19. There were only two experi-
ments in which the number of channels with weakly
pronounced differences reached five (nevertheless,
the remaining 14 channels showed reliable differ-
ences).

Similarly, we have also sought for differences
between the EEG records for imaginary motions and
background EEG signals. There was only one partici-
pant for which separation of the corresponding EEG
fragments was achieved in 7 channels of 19. In all other
experiments, the results were much better (from 11 to
all 19 reliable distinguished channels) and the results
of distinguishing imaginary motions and background
activity for four participants were comparable with the
results for real motions. A decrease in the number of
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channels admitting reliable recognition of EEG seg-
ments for imaginary motions is probably related to the
fact that the experiments were performed with non-
pretrained volunteers. The standard practice of work
with neurointerfaces consists in conducting experi-
ments after the stage of preliminary learning that pro-
vides better concentration of participants. Neverthe-
less, even the present case demonstrated the possibil-
ity of reliably recognizing EEG segments
corresponding to mental intentions.

In concluding, the results of our investigation
demonstrated the possibility of using the DFA-based
correlation analysis for distinguishing real and imagi-
nary motions of human arm with the aid of EEG sig-
nal records. This approach is advantageous compared
to other methods of digital signal processing such as
multifractal analysis [19, 20] used to solve an analo-
gous task previously [21]. The proposed method is
characterized by considerably faster response, which
allows using it in systems operating online and signifi-
cantly reducing the delay between decision making
and transition from the mental intention to a com-
mand controlling actuator devices of the neurointer-
face.
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