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Abstract—Oculomotor activity measurement is crucial for
understanding visual perception and cognitive processes in neuro-
science. This study conducts a comparative analysis of wearable
video-based eye tracking (Pupil Core) and electrooculography
(EOG) in detecting eye movements during a neurophysiological
task based on Raven’s Advanced Progressive Matrices (APM).
Fourteen calibration sessions were performed using five cali-
bration points, and data synchronization was achieved through
the Lab Streaming Layer protocol. Both eye tracking methods
were calibrated using optimal affine transformation matrices to
minimize discrepancies between fixation points and calibration
markers. The calibration error averaged 66.4 pixels for the
Pupil Core system and 64.73 pixels for EOG data, indicating
comparable accuracy between the two methods. Despite EOG’s
susceptibility to artifacts from muscle contractions and wire
movements, its performance suggests it is a viable alternative to
video-based systems, particularly in environments with challeng-
ing lighting conditions or when long-term monitoring is required.

Index Terms—eye tracking, electrooculography, calibration,
visual search

I. INTRODUCTION

The study of oculomotor activity is a fundamental aspect of
understanding the mechanisms of visual perception and human
behavior [1], [2]. In particular, in neuroscience, this research
allows us to comprehend the neurophysiological processes un-
derlying attention, cognitive functions, and interaction with the
environment [3]–[8]. Precise measurement of eye movements
enables the investigation of the neurophysiological basis of
human interaction with the surrounding environment, as well
as the diagnosis of various neurological disorders [9], [10].

Modern methods for recording oculomotor activity include
wearable video-based eye trackers and electrooculography
(EOG). Wearable video trackers use cameras and image pro-
cessing algorithms to determine eye positions and movements
in real time. They provide high spatial resolution and allow
for the analysis of complex patterns of oculomotor activity.
However, their effectiveness can be limited by external factors
such as low lighting or head movements.

On the other hand, electrooculography is based on measur-
ing the electrical potentials that arise when the eyeballs move
relative to the orbital axis. EOG is less dependent on external
conditions and may be more convenient for long-term studies.
Nevertheless, this method may be inferior in accuracy and
detail compared to video trackers. This method also has several
disadvantages, such as wire movement or muscle contractions.

In the context of neurophysiological experiments, it is
important to understand which method is most suitable for
specific research tasks. For example, when studying rapid
saccadic movements or microsaccades, video trackers can
provide more detailed information. At the same time, for long-
term monitoring of oculomotor activity in natural conditions,
EOG may be preferable.

The aim of this work is to conduct a comparative analysis
of wearable video-based eye trackers and electrooculography
for detecting oculomotor activity in specific research tasks in
neuroscience. We will consider the calibration capabilities and
accuracy of each method and their applicability in various
experimental conditions, as well as the potential impact on
the results of neurophysiological studies.

Understanding the efficiency and limitations of these tech-
nologies will improve the design of neurophysiological exper-
iments and contribute to a deeper understanding of the mech-
anisms underlying oculomotor activity and related cognitive
processes.

II. METHODS

This study examined a neurophysiological experiment based
on Raven’s Advanced Progressive Matrices (APM). APM is
widely used to assess abstract thinking and cognitive abilities,
requiring participants to identify patterns in visual sequences.
Recent research, such as the article [11] demonstrates that
the analysis of sequential eye movements can reveal strategies
employed by subjects when solving complex cognitive tasks.
An eye tracker, Pupil Core, was used to record oculomotor
activity, and the actiCHamp amplifier was employed to record
the electrooculogram (EOG), capturing both horizontal and
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vertical components. Since eye tracker data and electrooculo-
gram data cannot be directly compared, the EOG data were
initially filtered using a band-pass filter in the frequency range
of 0.01 to 40 Hz and then normalized to the maximum value
along each axis. Figure 1 shows the filtered and normalized
oculomotor activity signals for EOG and Pupil Core.

Fig. 1. Time dependence of x and y coordinates position for eye tricking
(Pupil Core) and EOG data.

To calibrate the measured data and calculate the coordinates
on the monitor screen from the oculographic activity data,
14 calibration sessions were added with a set of 5 points
at 4 at the corners and 1 at the center of the screen. The
subject had to sequentially move his gaze from one point
on the screen to another. The Lab Streaming Layer protocol
was used for recording and synchronizing the time series of
oculographic data. The Lab Streaming Layer (LSL) is an open-
source network protocol designed for the real-time exchange
of time series data between applications. It is commonly
utilized in neuroscience and psychophysiological experiments
to synchronize data streams from multiple sensors and devices,
ensuring precise temporal alignment for accurate analysis. For
calibration, optimal affine transformation matrices were cal-
culated to minimize the discrepancy between the transformed
fixation points and the markers [12], [13]. Figure 2 shows an
example of calibrated eye tracker data based on five markers.

The obtained data sets were calibrated for a monitor with
a resolution of 2560x1440. Subsequently, the error was calcu-
lated as the average distance (in pixels) from the median of
the centers of all fixations to the calibration point (marker).
Figure 3 shows the error value of each calibration session for
the Pupil Core and EOG data.

The obtained results demonstrate that the mean calibration
error for the Pupil Core eye-tracking system was 66.4 pixels,
while for the electrooculography (EOG) data it was slightly
lower at 64.73 pixels. These findings suggest that both methods
exhibit comparable levels of accuracy within the experimental
setup. The minimal difference in error values indicates that
EOG can serve as a viable alternative to video-based eye

Fig. 2. The eye tracker’s point cloud data after calibration, where: ’*’
indicates calibration markers, circles denote fixations, and colors represent
the association of points with specific markers.

Fig. 3. Error value of each calibration session for the Pupil Core and EOG
data

tracking for certain applications, especially when considering
factors such as cost, portability, or environmental conditions
that may affect optical systems.

CONCLUSION

This study compared wearable video-based eye tracking
(Pupil Core) and electrooculography (EOG) for detecting
oculomotor activity during a neurophysiological task based
on Raven’s Advanced Progressive Matrices. After calibration
using optimal affine transformations, both methods showed
similar mean errors: 66.4 pixels for Pupil Core and 64.73
pixels for EOG.

These results indicate that EOG provides accuracy compa-
rable to video-based eye tracking and can serve as a viable
alternative, especially when optical methods are hindered by
factors like low lighting or head movements. Despite potential
artifacts in EOG data, its effectiveness suggests it is valuable
for certain research applications.
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