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Abstract: We trained an artificial neural network (ANN) to distinguish between correct and erroneous
responses in the perceptual decision-making task using 32 EEG channels. The ANN input took the
form of a 2D matrix where the vertical dimension reflected the number of EEG channels and the hori-
zontal one—to the number of time samples. We focused on distinguishing the responses before their
behavioural manifestation; therefore, we utilized EEG segments preceding the behavioural response.
To deal with the 2D input data, ANN included a convolutional procedure transforming a 2D matrix
into the 1D feature vector. We introduced three types of convolution, including 1D convolutions
along the x- and y-axes and a 2D convolution along both axes. As a result, the F1-score for erroneous
responses was above 88%, which confirmed the model’s ability to predict perceptual decision-making
errors using EEG. Finally, we discussed the limitations of our approach and its potential use in the
brain-computer interfaces to predict and prevent human errors in critical situations.

Keywords: perceptual decision-making; ambiguous stimuli; electroencephalograms; perceptual
error; machine learning (ML)

MSC: 37M10

1. Introduction

Brain-computer interfaces (BCIs) have become a popular subject of scientific research
in the fields of neurotechnology and neurorehabilitation [1]. In the most common paradigm,
known as active BCI, the BCIs aim at decoding brain activity into the control commands
for the external devices. Using active BCI, the operator thought to generate the mental
commands at any time they want without external assistance. For instance, a person with
paraplegia may make the wheelchair move in different directions [2]. Another paradigm,
reactive BCI, complements an active BCI with external stimulation, helping the operator
to generate mental commands [3]. In a popular reactive BCI called P300 speller, a subject
looks at a display where characters are flashing and selects one character by attending
to it [4]. In the wheelchair control, this display may contain flashing symbols reflecting
different directions of movement. Finally, a passive BCI paradigm implies monitoring
brain state and signalling when it deviates from the normal [5]. This idea stands behind the
closed-loop antiepileptic device, a brightest example of the passive BCIs [6,7].

Passive BCIs may give rise to assistive technologies (AT) that monitor brain activity in
resource-demanding tasks [8,9]. Analysing EEG signals in on-line mode, AT may detect
fatigue, loss of attention, and other states in which the performance declines. Being built in
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the car, AT will advise to have a rest after many hours of driving. In the aircraft, it could
detect the pilot’s fatigue and inform the co-pilot. Similarly, flight operations officers or
power plant operators may finish their shift earlier once AT have found the biomarkers
of fatigue in their EEG [10]. However, this concept faces challenges when transiting from
the lab to real-life applications. First, AT decode brain states, which reflect the increasing
probability of performance decline but do not guarantee its appearance. When diagnosing
mental fatigue, we expect a high risk of errors. At the same time, the operator makes errors
when the signs of fatigue are absent on EEG signals. Second, the brain state changes in a
manner far from monotonous. Thus, together with an expected drop of attention with the
time on task, it fluctuates within short timescales so that AT predicts the performance to
decline very often. To overcome these challenges, AT should predict the error itself rather
than detect a state when its probability is high. It will enable the target assistance only
when it is necessary.

In this manuscript, we made the first step towards the perceptual errors’ prediction in
the brain-computer interfaces—we proposed a machine learning model that predicts errors
from the short EEG segments on a single-trial basis. To collect behavioural data and brain
activity signals, we used a perceptual decision-making task, an experimental paradigm that
requires participants to perceive visual stimuli on the screen and respond to them using
joystick. In this paradigm, the participants were subjected to perceive 400 stimuli in a row
with a brief interval. It simulated the real-life situation that implies the decision making
under stress and pressure. To increase the probability of errors, we used ambiguous stimuli
and decreases the stimulus exhibition time. As the result, the subjects make errors in 13%
of responses.

The literature suggests that the neural activity registered before the stimulus onset
carries biomarkers of the observer’s state, affecting the decision on an ongoing stimulus [11].
Therefore, we expect that ANN will learn to distinguish between the errors and correct re-
sponses using the pre-stimulus EEG segments as the input. Recent studies on the perceptual
decision-making report that this process involves two components: sensory processing and
decision-making. The sensory processing dominates during the early time window (about
300 ms, 30% of the whole decision time) [12,13]. There is a view that the brain matches
sensory information with an internal template, even in the early sensory-processing stages.
Therefore, we expect that neural activity registered during 300 ms post-stimulus onset also
influences the final decision on the stimuli and may also serve as ANN input.

We merged the data of all subjects and trained artificial neural network (ANN) to
classify (correct vs. incorrect) responses from the EEG fragments. The following results
were obtained:

• We demonstrated that ANN can predict errors in the perceptual-decision-making
task using EEG signals recorded before the behavioural response with the accuracy
above 85%.

• To form the input data for ANN, we averaged neural activity over time and over the
sensors. In both cases, the classification accuracy remained above 85% manifesting
that both dimensions contain valuable discriminating features.

• Using prestimulus and post-simulus EEG segments as input data resulted in the
classification accuracy above 85%. The prestimulus EEG reflect human state while
post-stimulus EEG reflect the sensory processing mechanisms. Thus, we concluded
that these processes affect the final decision.

Finally, we discussed the future development of error decision-making prediction in
assistive BCIs.

This manuscript has the following structure. Materials and Methods section con-
tains description of the experiment including the recruitment, EEG recording and the
type of perceptual decision-making task, es well as the data analysis pipeline including
preprocessing, feature selection, machine-learning model, its hyperparameters and cross-
validation procedure. Results section presents the outcomes of the ML application in terms
of accuracy, F1-score, sensitivity and specificity. This section also reports the effect of ML
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hyperparameters and the class imbalance on the classification scores. Finally, Discussion
section summarizes the results, pays attention to the limitation of our paradigm, and its
potential use in the brain-computer interfaces to predict and prevent human errors in
critical situations.

2. Materials and Methods

In this section, we described experimental paradigm and data analysis framework.
The description of experimental paradigm includes recruitment process, visual stimuli
(Necker cubes), design of experiment, and behavioural estimates resulted in separating
data in two classes. The description of data analysis framework includes preprocessing,
feature selection, machine learning model, and cross-validation.

2.1. Participants

Thirty naive healthy subjects (16 females) aged 18–33 years (M = 22.1, SD = 2.68) with
no previous psychiatric or neurological history participated in the experiments. Individual
neuroimaging studies typically involve 12–20 participants [14]. At the same time, 30 is
the smallest sample size that allows using central limit theorem [15]. All the subjects have
normal or corrected-to-normal visual acuity. All of them provided written informed consent
in advance. The study was approved by the local ethics committee of the Lobachevsky
State University of Nizhny Novgorod (ethical approval number 2, dated 19 March 2021)
and was following the Declaration of Helsinki, except for registration in a database.

2.2. EEG Recording

We registered electroencephalograms (EEG) using a 48-channel NVX-52 amplifier
(MKS, Zelenograd, Russia). EEG signals were recorded from 32 standard Ag/AgCl elec-
trodes (Fp1, Fp2, F3, Fz, F4, Fc1, Fc2, F7, Ft9, Fc5, F8, Fc6, Fc10, T7, Tp9, T8, C3, Cz, C4, Cp5,
Cp1, Cp2, Cp6, Cp10, P7, P3, Pz, P4, P8, O1, Oz, O2), placed according to the international
10–10 system. The earlobe electrodes were used as a reference. The ground electrode was
placed on the forehead. Impedance was kept below 10 KΩ. EEG was digitized with a
sampling rate of 1000 Hz.

2.3. Visual Stimulus

We used Necker cubes as visual stimuli. Figure 1 illustrates the set of visual stimuli—
Necker cube images with the different contrast of the inner edges [16]. For each cube, we
introduced parameter a = 0.15, 0.25, 0.4, 0.45, 0.55, 0.6, 0.75, 0.85 defining the inner edges
contrast. It reflected the intensity of three lower-left lines, while 1− a corresponded to
the intensity of three upper-right lines. The parameter a can be defined as a = 1− y/255,
where y is the brightness level of three lower-left lines using the 8-bit gray-scale palette.
The value of y varies from 0 (black) to 255 (white).

2.4. Experiment

During the experiment, participants were comfortably seated in a reclining chair. With
both hands, they held a two-button input device connected to the amplifier. Participants
were instructed to stay relaxed with open eyes during the entire experiment unless perform-
ing a task. At the beginning and at the end of the experiment, we recorded resting-state
EEG activity for 3 min. The Necker cube images of 25.6 cm were displayed on a 27-inch
LCD screen (with the 1920 × 1080 pixels resolution; 60 Hz refresh rate) located at a distance
of 2 meters from the participant. Each cube appeared on the screen for a short time interval,
randomly chosen from the range 1–1.5 s. Between the stimuli, we demonstrated an abstract
image for 3–5 s. The timing of Necker cubes presentations and the EEG streams were
synchronized using a photodiode connected to the amplifier. During experimental sessions,
the cubes with predefined ambiguity (see all images in Figure 1) were randomly demon-
strated 400 times, each cube with a particular ambiguity was presented about 50 times.
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Participants were instructed to press either the left or right key when recognizing the left or
the right stimulus orientation. The experiment lasted around 45 min.
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Figure 1. (A) An example of the Necker cube image with the labelled inner edges. (B) Visual
stimuli (Necker cubes) with different values of the contrast parameter, a determining orientation, and
ambiguity. (C) Scheme of the experiment. We presented 400 images, each presentation starts at the
presentation time PT and lasts τi ∈ [1, 1.5] s. The pause time γi varies from 3 to 5 s.

2.5. Behavioural Estimates and Definition of Classes

For each participant, we calculated error rate ER as the percentage of erroneous
responses. The correctness of each response was evaluated by comparing the actual
stimulus orientation with the subject’s response. The actual orientation of the Necker cube
was defined by the contrast of the inner edges. Thus, a = 0.15, 0.25, 0.4, 0.45 defined the
left-oriented cubes, while a = 0.55, 0.6, 0.75, 0.85 stood for the right-oriented ones. To define
the correctness, we checked whether the subject pressed the left button for a = 0.15, 0.25,
0.4, 0.45, or the right button for a = 0.55, 0.6, 0.75, 0.85. Otherwise, their response was
incorrect. ER varied from 0.54% to 83% in the group of participants (M = 13%, SD = 14%).
We excluded four participants whose ER was lower than 2.1% (5 percentile) and higher
than 28.6% (95 percentile) from the consideration.

We tested how the ER depends on the type of stimulus using repeated measures
ANOVA. Stimulus ambiguity (High vs. Low) and stimulus orientation (Left vs. Right)
were taken as within-subject factors. As a result, we found a significant main effect
of ambiguity: F(1,25) = 65.13, p < 0.001, The main effect of orientation was insignificant
F(1,25) = 0.88, p = 0.375. Finally, we reported an insignificant interaction effect of Ambiguity
and Orientation: F(1,25) = 0.02, p = 0.888. The post-hoc t-test revealed, the ER for High
ambiguity (M = 18.2%, SE = 2.02) exceeded ER for Low ambiguity (M = 3.3%, SE = 0.53):
p < 0.001, Bonferroni correction.

2.6. Data Analysis

The overall data analysis framework includes three main steps (Figure 2): preprocess-
ing (1), feature selection (2), and cross-validation (3). In the preprocessing block, we filtered
raw EEG, removed ICAs with artefacts, segmented signals into the trials and removed bad
segments. In the convolution block, we performed dimension reduction by averaging EEG
signals over time and/or over the sensors. In the cross-validation block, we combined data
of all subjects and divided trials into the test (10%) and train (90%) sets. This procedure
was repeated five times followed by randomising the trials. All scores were averaged over
the five rounds of cross-validation.
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Figure 2. Schematic illustration of the overall data analysis framework with three main steps:
preprocessing (1), feature selection (2), and cross-validation (3).

Preprocessing. We filtered EEG signals with a fourth-order Butterworth (1− 100)-Hz
bandpass filter and a 50-Hz notch filter. In addition, we performed an independent compo-
nent analysis (ICA) to remove eye blinking and heartbeat artifacts. These pre-processing
procedures were carried out in Matlab using EEGLAB software. We then segmented EEG
signals into 4-s trials associated with a single presentation of the Necker cube, including a
2-s interval before and 2-s interval after the moment of the stimulus demonstration. After
the visual inspection, we excluded some trials due to the remaining large-amplitude arti-
facts. To exclude trials containing large amplitude artifacts, we used the z-value threshold
z < 1. The rejection procedure was performed using the FieldTrip toolbox in Matlab. After
the rejection, we had 40± 21 SD erroneous and 326± 24 SD correct trials per subject.

Feature selection. We considered each trial as a (32× 375) matrix containing values
of EEG amplitude at each channel at a 1.5 s interval (time of interest, TOI1), including
1 s prestimulus (TOI3) and 0.5 post-stimulus (TOI2) segments. This matrix served as an
input for the convolutional procedure. We supposed that TOI3 stored information about
the participant’s condition, including their fatigue and attention. These processes affect
neuronal activity regardless of the task, but may produce a strong impact on the decision
accuracy. The neural activity at TOI2 reflected sensory processing. In line with the Ref. [12]
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we hypothesized that sensory processing prevails during the earlier temporal window,
while decision-making lasts for a prolonged time and dominates before the behavioural
response. At the same time, there is a view that perceptual decision-making is an iterative
process, so even in the early stages, the brain matches sensory evidence with the internal
templates to make the decision. Thus, neural activity at TOI2 may also affect the decision
accuracy. Here, we tested whether we could classify the correct and erroneous responses
using EEG data at TOI2 and TOI3. We used three different input matrices containing values
of EEG amplitude at 32 channels:

• for TOI1—the (32× 375) matrix;
• for TOI3—the (32× 250) matrix;
• for TOI2—the (32× 125) matrix.

Convolution. Each input (m× n) matrix underwent a convolutional procedure that
reduced their height and width. We implemented different types of convolution as follows:

• 1D convolution (y-axis)—convolution only slides along the channel dimension (y-
direction) where the time dimension (x-direction) is fixed. In this case, we averaged
EEG amplitude across all channels at every moment. As a result, the (m× n)-matrix
was reduced to the m-dimensional feature vector, where m reflected the length of time
interval (TOI1, TOI2, or TOI3);

• 1D convolution (x-axis)—convolution only slides along the time dimension (x-direction)
where the time dimension (y-direction) is fixed. In this case, we averaged EEG
amplitude over time for all channels. As a result, the (m× n)-matrix was reduced to
the m-dimensional feature vector, where m = 32 reflected the number of EEG channels;

• 2D convolution (x,y-axes)—convolution slides along both channel and time dimensions.
First, averaging EEG amplitude across all channels leads to the m-dimensional feature
vector, where m is the length of interval. Defining the length of resulting feature
vector k, we segmented the time interval into k equal pieces. Finally, averaging EEG
amplitude in each segment forms the k-dimensional feature vector. In this approach, k
is a hyperparameter.

Cross-validation. After the convolutional procedure, we loaded the feature vector to
the artificial neural network (ANN) implemented using the TensorFlow library in Python.
We trained ANN to distinguish between the correct and erroneous responses and evaluated
its efficiency using cross-validation. Merging the data of all the participants, we formed a
dataset of 9534 trials, 8480—correct and 1054—erroneous. Each round of cross-validation
involved partitioning a dataset into two subsets, performing ANN training on the training
subset (8580 trials, 90%), and validating on the testing subset (954 trials, 10%).

In each round, we estimated the model’s performance using categorical accuracy, sen-
sitivity and specificity. To reduce variability, we performed five rounds of cross-validation
using different partitions and averaged metrics over the rounds.

Hyperparameters. We tested how the ANN’s performance changed depending on the
variations of the basic hyperparameters.

Optimizer—an algorithm used to change the attributes of the neural network such as
weights and learning rate in order to reduce the losses. We used the following optimizers:
Stochastic gradient descent; Root-mean square propagation; Adam; Adaptive Gradients
(Adagrad); Adam optimizer with the infinity norm (Adamax); Adam optimizer with
Nesterov momentum (Nadam).

Initializer—a technique that defines the way to set the initial random weights of ANN
layers. Here, we used the following initializers: Xavier normal initializer, Xavier uniform
initializer; He normal initializer; He uniforms initializer; Lecun Normal initializer; Lecun
Uniform initializer; Orthogonal initializer; Random normal initializer; RandomUniform
initializer; Glorot normal initializer; Truncated normal distribution; Variance Scaling.

The activation function defines how the neuron transforms the weighted sum of the
input into an output. Here, we set the following activation function to the neurons in the
intermediate layer: relu; sigmoid; softmax; softplus; softsign; tanh; selu; elu; exp.
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Learning rate—a hyperparameter that controls how much to change the ANN model in
response to the estimated error each time the model weights are updated. A small learning
rate may result in a long training process, whereas a large learning rate may result in
learning a sub-optimal set of weights too fast or an unstable training process.

Batch size defines the number of samples that will be propagated through the network.
If the batch size is equal to 100, the algorithm takes the first 100 samples from the training
dataset and trains the network. Next, it takes the second 100 samples (from 101st to 200th)
and trains the network again. We can keep doing this procedure until we have propagated
all samples through the network.

The number of epochs defines the number of times that the learning algorithm will work
through the entire training dataset. One epoch means that each sample in the training
dataset has had an opportunity to update the internal model parameters. When the number
of epochs is large, the ANN learns patterns that are specific to sample data to a great extent.
As a result, ANN gives high accuracy on the training set but fails to achieve good accuracy
on the test set.

Handling imbalanced dataset. First, we used additional metrics to evaluate the
model’s performance. Thus, we calculated precision and recall for each class. Then, we
calculated F1-score of a class as the harmonic mean of precision and recall (2× precision×
recall/(precision + recall)). If both precision and recall were high resulting in the high
F1, we concluded that this class was perfectly handled by the model. Using the F1 score
for errors, we evaluated whether undersampling the dataset could improve the model
performance. Undersampling is a procedure that implies sampling from the majority class
(the correct responses) to keep only a part of these points. There are different rules for
undersampling, but we utilized the random undersampling. Thus, we randomly removed
the part of data from the class of correct responses so that the proportion class1:class2
varied from 1:8 to 1:1.

Finally, there is a view that if two classes are separated enough (far apart from each
other in the feature space), the imbalance between them may be compensated. One way
to increase separability is enriching the dataset with additional features. To test how the
separability influences the model performance, we used 2-D convolution to compress the
input matrix to the 1-D vector of k-features. First, we evaluated how the Euclidian distance
between classes changed with growing k. Then, we analyzed whether the F1 score varied
with changing k.

3. Results

We started with the ANN containing a single intermediate layer and the following
hyperparameters: initializer = RandomUniform, intermediate layer activation function
= softmax, Adam optimizer, learning rate = 1, batch size = 200, number of epochs = 10.
This configuration provided 88% accuracy for the 1D convolution across the x-axis and
88.9%—for the 1D convolution across the y-axis. In the first case, the convolution formed a
vector A = (A1 . . . Am) where m = 32 is the number of EEG channels. In the second case,
we obtained a vector A = (A1 . . . Am) where m depended on the time interval, taking the
value of 375 (for TOI1), 125 (for TOI2), and 250 (for TOI3). For the 2D convolution, we
tested how the ANN accuracy depended on the vector size k obtained after the convolution.
As a result, the optimal value, k = 47, resulted in 91.6% accuracy.

When running the ANN with a different number of intermediate layers, we found
that accuracy fluctuated from 88.1% (for 4 layers) to 89.9% (for 1 layer). There was neither
monotonic growth nor a decrease of the accuracy with the number of layers. Thus, we
proceeded with a single intermediate layer to decrease computational costs.

Then, we considered different weight initialization techniques and found the highest
accuracy of 92.6% for the orthogonal initialization generating an orthogonal matrix. For
the other initialization techniques, accuracy varied from 87.7% (for the Glorot normal
initializer) to 90.4% (for the He initializer).
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Considering different activation functions, we found that rely provided the highest
accuracy of 92.6%, while so f tplus resulted in the lowest accuracy of 88.8%. We used rely
only for the neurons in the transient layer. On the output layer, we proceeded with sigmoid
function, a common option for the binary classification task.

We utilized different optimizers to adjust the ANN attributes and achieved the highest
accuracy of 91% for Adagrad optimizer and the lowest accuracy of 88% for the Root Mean
Squared Propagation.

When changing the learning rate (LR) from 10−5 to 10−3, we observed weak non-
systematic changes in the accuracy in the range from 88% (for LR = 10−5 ) to 91% (for
LR = 10−4).

When changing the batch size from 300 to 4000, we also observed weak nonsystematic
changes in the accuracy in the range from 87.8% (for batch size = 200) to 89.5% (for batch
size = 500).

To find an optimal number of epochs, we varied this parameter from 1 to 100. For
each value, we trained ANN with the five different batch sizes and averaged the resulting
accuracies. For the number of epochs = 1, ANN gave an accuracy of 89.7%. the further
enlargement of the number of epochs only slightly enhanced the accuracy to 89.9%.

Finally, we run the ANN with the optimal hyperparameters (initilizer = Orthogonal,
activation function = relu, optimizer = Adagrad, learning rate = 0.0001, batch size = 500,
epochs = 1) to classify the responses (correct vs. incorrect) using the different types of
convolution and the different fragments of EEG signals. As a result, classification accuracy
varied in a narrow range of 88.4–89% achieving 89% for TOIs 1,3 and the 1D convolution
along the y-axis, and 88.4% for TOI1 and 1D convolution along the x-axis (Table 1).

Table 1. The classification accuracy depending on the convolution type and the EEG segment.

Convolution Type TOI1 TOI2 TOI3

1D convolution (x-axis) 88.4%± 0.3%SD 88.6%± 0.3%SD 88.5%± 0.2%SD
1D convolution (y-axis) 89%± 0.07%SD 88.8%± 0.2%SD 89%± 0.1%SD
2D convolution (x,y-axes) 88.8%± 0.2%SD 88.5%± 0.2%SD 88.9%± 0.1%SD

Considering the F1-scores for each class, we found that it varied from 87.8% to 88.1%
for the erroneous responses (Table 2) and from 88% to 88.2% for the correct responses
(Table 3).

Table 2. The F1-score for erroneous responses depending on the convolution type and the EEG segment.

Convolution Type TOI1 TOI2 TOI3

1D convolution (x-axis) 87.9%± 0.1% SD 87.9%± 0.2% SD 88%± 0.2% SD
1D convolution (y-axis) 87.8%± 0.1%SD 87.8%± 0.1%SD 87.9%± 0.05%SD
2D convolution (x,y-axes) 88.1%± 0.3%SD 87.9%± 0.1%SD 87.9%± 0.2%SD

Table 3. The F1-score for correct responses depending on the convolution type and the EEG segment.

Convolution Type TOI1 TOI2 TOI3

1D convolution (x-axis) 88.2%± 0.1%SD 88.1%± 0.2%SD 88%± 0.2%SD
1D convolution (y-axis) 88.1%± 0.1%SD 88.1%± 0.1%SD 88.2%± 0.05%SD
2D convolution (x,y-axes) 88.1%± 0.1%SD 88.1%± 0.2%SD 88.2%± 0.1%SD

Considering the sensitivity, we found that it varied from 86.8% to 87.6% (Table 4). The
specificity varied from 88.9% to 89.2% (Table 5).
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Table 4. The sensitivity depending on the convolution type and the EEG segment.

Convolution Type TOI1 TOI2 TOI3

1D convolution (x-axis) 87.1%± 0.1%SD 87.1%± 0.1%SD 87.6%± 0.4%SD
1D convolution (y-axis) 86.8%± 0.1%SD 86.8%± 0.1%SD 86.8%± 0.04%SD
2D convolution (x,y-axes) 86.9%± 0.1%SD 86.9%± 0.1%SD 87.1%± 0.3%SD

Table 5. The specificity depending on the convolution type and the EEG segment.

Convolution Type TOI1 TOI2 TOI3

1D convolution (x-axis) 89%± 0.2%SD 88.9%± 0.3%SD 88.7%± 0.3%SD
1D convolution (y-axis) 89.1%± 0.09%SD 89.1%± 0.1%SD 89.2%± 0.05%SD
2D convolution (x,y-axes) 89.1%± 0.1%SD 89.1%± 0.06%SD 89.1%± 0.2%SD

Addressing the imbalance problem, we randomly removed the part of data from the
class of correct responses so that the proportion (erroneous:correct) varied from 1:1 to 1:8.
We found that F1-score for the erroneous responses decreased for undersampled data.
Thus, F1-score was equal to 40% for 1:1 ratio, while for 1:8 F1 increased to 83%.

To study the class separability in the feature space, we calculated the Euclidean dis-
tance between their centroids. We analysed how the distance between classes depends
on the number of features, k, obtained after the 2D convolution. As expected, the dis-
tance grows with increasing k. At the same time, the classification score does not exhibit
systematic changes with the growing distance.

4. Discussion

We trained ANN to distinguish between the correct and erroneous responses to the
visual stimulus using 32 EEG signals recorded from the different parts of the scalp. The
ANN input took the form of a 2D matrix where the vertical dimension (y-axis) reflected the
number of EEG channels, and the horizontal (x-axis) dimension reflected the considered
time interval.

We focused on distinguishing the responses before their behavioural manifestation;
therefore, we utilized EEG segments preceding the behavioural response. They included
a 1-s trace preceding and a 0.5-s trace following the stimulus onset. We observed the
behavioural responses 1 second after the stimulus onset.

To deal with the 2D input data, ANN included a convolutional procedure, transform-
ing a 2D matrix into the 1D feature vector. We introduced three types of convolution,
including 1D convolutions along the x- and y-axes and a 2D convolution along both axes.

We studied how the ANN’s output changed depending on variations of the ANN
hyperparameters. Summarising the results, we concluded that ANN gives about 90%
accuracy. Manipulations with the input data, including the length of EEG trace and the
convolution type, lead to slight deviations in the accuracy. Similarly, accuracy changes from
88% to 90% when varying the ANN hyperparameters. These results confirm that ANN may
predict perceptual errors using EEG signals. Finally, due to the small number of perceptual
errors, we addressed the class imbalance problem by undersampling the majority class of
the correct responses. We observed that undersampling reduces the classification score.
Thus, we concluded that the rare nature of errors might be their distinguishing feature
required for the classification.

Our study has a potential limitation arising from the specific features of the human
data. First, cross-validation only yields meaningful results if the testing and training sets
belong to the same population. To obey this criterion, we merge data of all subjects and
randomly divide all trials into the training and testing sets. Thus, both sets may include
trials of one subject ensuring their drawing from the same distribution. At the same time,
EEG data may vary between participants and even between the different trials recorded in
the different phases of the experiment. These issues, known as cross-subject and cross-trials
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problems [17] could be addressed by subspace learning, a type of the transfer learning [18].
This approach consists in extracting a subset containing the common features of the trials
in one class and excluding varying components [19].

As we showed in Ref. [20], the feature subset may include features obtained from the
statistical contrast between classes using the within-subject design. For the current task,
it means averaging EEG features across the correct and erroneous trials for each subject
and contrasting the obtained mean values using the paired-samples statistics. Our ongoing
study will use the statistical contrast of the EEG spectral power (SP) between the correct
and erroneous responses to find EEG channels and frequencies where SP differs between
the correct and erroneous responses regardless of between-subject variability.

A bulk of literature describes employing a similar predictive analysis in BCIs to control
motor activity and decision making. In 2011, Bai and colleagues used EEG signals to predict
natural human movement before it occurs in real time [21]. Measuring muscle activity, they
captured the start of movement and reported its prediction for 0.6 s. To extract features
from EEG signals, the authors used Surface Laplacian derivation and the Welch-based
power spectral density estimation. Loading the extracted features to the multivariate
linear classifier, they correctly predicted 40% of total moves. A year later, Maeder et al.
utilized the pre-stimulus EEG signals in the motor-imagery BCI [22]. They addressed how
the pre-stimulus sensorimotor rhythms (SMR) amplitude influences the successive task
execution quality and the classification performance. Using Common Spatial Patterns
preprocessing and Linear Discriminant Analysis, they reported that higher SMR amplitude
predicts better classification performance. In their work, Meinel et al. also used pre-trial
EEG to predict performance in the sequential isometric force control task, a paradigm for
hand motor rehabilitation after stroke [23]. They assessed performance using the clinically
relevant metrics, including reaction time, smoothness, and precision of the produced force
trajectory. To predict them, they trained the regression model, Source Power Comodulation
where predictors were selected through the feature extraction procedure. As a result, their
model explained up to 36% of the performance fluctuations in the motor rehabilitation
scenario. In 2015, Lin et al. combined EEG signal analysis with behavioural modeling to
predict Human Errors in Numerical Typing [24]. Using Linear Discriminant Analysis, they
reported a reasonable classification performance of 0.63 in terms of AUC. A recent work
by Dehais and colleagues describes the passive BCI prototype, which predicts attentional
error before it happens in flight conditions [25]. They instructed pilots to fly a challenging
flight scenario while responding to auditory alarms by button press. The behavioural
results disclosed that the pilots missed 36% of the auditory alarms. The authors used EEG
signals recorded for 3 s before the alarm to train different classifiers including Supervised
Dictionary techniques, Nearest Neighbour, and Linear Discriminant Analysis. In the best
case, they reported a classification performance of up to 70%. Finally, Fernandez-Vargas
et al. proposed another prospective application of the pre-stimulus activity in BCIs [26].
They found the subject- and task-independent neural correlates of decision confidence
and proposed an algorithm to estimate decision confidence on a trial-by-trial basis. The
authors further suggested that confidence in perceptual decision-making tasks could be
reconstructed from neural signals even when using transfer learning approaches.

According to this review, using a predictive paradigm in BCI is a promising and
developing approach. We believe that our results will contribute to its further development
in the laboratory and real-life settings. For implementing our model to BCI technology it
should allow real-time operation. Although this was not demonstrated in this study, our
method can be easily applied for real-time perceptual errors’ prediction. This is facilitated
by two key features of our model: data preprocessing is implemented automatically and
after training the artificial neural network works immediately without delay.

Important to note that our model has a nonzero false positive rate (mean FPR is 10%).
False positive errors are the most dangerous errors for an BCI operator because they can
provoke improper action of BCI, thus risking the possibility of normal functional neural
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activity disturbance. For these cases in order to minimize the negative effects of the BCI
action, a careful choice of the subject stimulation strategy is essential.

5. Conclusions

We demonstrated that artificial neural network can predict errors in the perceptual-
decision-making task using EEG signals recorded before the behavioural response with
the accuracy above 85%. To form the input data for ANN, we averaged neural activity
over time and over the sensors. In both cases, the classification accuracy remained above
85% manifesting that both dimensions contain valuable discriminating features. Using
prestimulus and post-simulus EEG segments as input data resulted in the classification
accuracy above 85%. The prestimulus EEG reflect human state while post-stimulus EEG
reflect the sensory processing mechanisms. Thus, we concluded that these processes affect
the final decision.

While this study reports the possibility to predict errors, further researches required to
build an optimal machine learning model to achieve the best classification metrics.

Our approach performs a single-trial classification; therefore, it can be implemented in
BCI. The further studies will test this possibility using BCI paradigm.
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