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Abstract—Nowadays, the problem of forecasting complex sig-
nals is significant and has many applications in real life. One of
such applications is the prediction of neurophysiological signals,
like EEG. Such signals are macroscopic signals of a group of
neurons, and the connections between them adapt in time. Here,
we investigate the possibility of forecasting the dynamics of the
modulated adaptive network, which topology changes in time,
using Reservoir Computing (RC). We show that the dynamics of
the signal is chaotic, and RC cannot predict it, but reconstruction
of the phase space by adding the delays improves the quality of
the signal’s prediction.

Index Terms—Reservoir computing, prediction, complex net-
work, adaptation, Kuramoto phase oscillator

I. INTRODUCTION

Nowadays, investigation of nonlinear dynamics of complex

systems such as neural networks [1]–[3], brain [4]–[11], func-

tional networks [12]–[14], electron flows [15]–[20], etc. Com-

plex systems are characterized by multiple, interacting spa-

tiotemporal scales that challenge classical numerical methods

for prediction and control. In real life, we face the challenges

of predicting the dynamics of different natures like weather,

climate [21], [22], medicine [23], [24], neuroscience [25]–

[27], ocean and turbulent flows [28], [29], traffic flows [30]–

[33], etc. One of the interesting tasks here is forecasting

neurophysiological signals.

Forecasting neurophysiological signals is an important task

due to allows diagnosing and reacting in time to a negative

phenomenon, for example, epilepsy seizures. Recurrent Neural

Networks (RNNs) offer a potential method for addressing

these challenges. The most promising type of RNN for solving

this task is Reservoir Computing (RC). The neurophysiological

signal is a macroscopic signal from adaptive neural network.

An important task is to predict the macroscopic dynamics of

complex network systems often encountered in real life. The

difficulty here lies in the fact that signals from many separate
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objects through a complex communication structure merge into

a single signal from the entire system, which significantly

reduces the dimension of the signal, making it impossible to

restore the sources of such a signal.

So, we address the question of using Reservoir Computing

to forecast the dynamics of the modulated adaptive network.

We show, that the dynamics of the signal is chaotic, and

RC cannot predict it, but reconstruction of the phase space

by adding the delays significantly improves the prediction’s

quality.

II. METHODS

As a model, we use a network of 100 Kuramoto phase

oscillators with an adaptation of couplings. The model and the

adaptation mechanism are described in [34]. Each oscillator is

described by the following equation:

φ̇i(t) = ωi +
∑

j 6=i

wij(t) sin(φj − φi), (1)

where i = 1, ..., N , ωi is a natural frequency, wij is the

connection weight between elements i and j and it is allowed

to evolve in time according to the rule from [34].

This model describes the adaptive network of phase oscilla-

tors with the competition between homophily and homeostasis.

Initially, all the weights wij and phases φi are random. At

time the coupling between the oscillators are changing along

with the topology. We analyze the signal averaged over all

N = 100 phase oscillators:

Xavr(t) =
1

N

N∑

i=1

sin[φi(t)]. (2)

To solve the differential equations, we use the Runge Kutta

4th order method with time step ∆t = 0.1 s for T = 7000 s.

The schematic representation of Recurrent neural network

with Reservoir is shown in Fig. 1. The network has the input,

hidden (reservoir) and output layers. Every reservoir node has
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Fig. 1. The schematic representation of Recurrent neural network with Reservoir.

inputs drawn from other nodes in the reservoir or the input

to the RC, and every input has an associated weight. Each

reservoir node also has an output. The output of each reservoir

node is fed into the output layer of the RC, which performs

a linear operation of the node values to produce the output of

the RC as a whole.

During training process we apply signal to the input of RC

and receive output signal. The goal of RC is to approximate

the desired outputs appropriate to the inputs. After training is

complete, we start the testing process when RC try to predict

the signal dynamics by itself. We apply only first point of the

signal to reservoir’s input, after that the output is fed into the

input, and the reservoir system is run autonomously.

We use the reservoir with D = 1000 nodes and investigate

RCs with a different number of input nodes. The number of

output nodes in each case is the same as the number of input

nodes.

III. RESULTS

We analyze the capability of Reservoir computing to predict

the dynamics of the macroscopic signal received from the

network of 100 Kuramoto phase oscillators with adaptation.

Applying only the original macroscopic signal makes RC

impossible predict it. To improve the prediction quality, we

reconstruct the phase space of the investigated signal by

adding the delayed signals to the original one. Such approach

significantly improves the quality of the signal’s prediction.

We investigate how a number of delayed signals influence

the quality of prediction. We found that the maximal correla-

tion between the original and the predicted signal is achieved

for 2 delays, and further increase of the delays does not change

it. The same effect was observed for the normalized root

mean square error. Wherein the longest time during which

correlation between the original and the predicted signal is

more than 0.95 is achieved for 2 delays. This result correlates

with the estimated embedding dimension of the original signal

is 3.

We analyze the parameter’s space (D,R, σin) of RC and

found that increasing the number of the delays from 2 to

8 leads to decreases the number of optimal points in the

parameter’s space with high correlation. We suppose that it is

connected to the original signal phase space dimension and the

reservoir’s capacity. Reconstruction of the phase space allows

to predict the signal correctly but a further increase of the

number of signals decreases the effectiveness of the reservoir’s

forecast, which manifests itself in reducing the number of

optimal parameters.

IV. CONCLUSIONS

We analyzed the capability of Reservoir computing to

predict the dynamics of the macroscopic signal. As a model,

we used the network of Kuramoto phase oscillators with the

adaptation of couplings. We have shown that the dynamics of

the signal is chaotic, and RC cannot predict it. To improve

the prediction quality, we reconstructed the phase space of

the investigated signal by adding the delayed signals to the

original one. Such approach improves the quality of the

signal’s prediction.
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