
PHYSICAL REVIEW E 92, 012913 (2015)

Lyapunov exponent corresponding to enslaved phase dynamics: Estimation from time series
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A method for the estimation of the Lyapunov exponent corresponding to enslaved phase dynamics from time
series has been proposed. It is valid for both nonautonomous systems demonstrating periodic dynamics in the
presence of noise and coupled chaotic oscillators and allows us to estimate precisely enough the value of this
Lyapunov exponent in the supercritical region of the control parameters. The main results are illustrated with
the help of the examples of the noised circle map, the nonautonomous Van der Pole oscillator in the presence of
noise, and coupled chaotic Rössler systems.
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I. INTRODUCTION

Lyapunov exponents (LEs) are a powerful tool for the
analysis of complex system dynamics [1–4]. In particular, they
are used for identification of the transition between different
regimes (e.g., from periodic and quasiperiodic oscillations
to the chaotic ones [5,6] or from chaotic oscillations to the
hyperchaotic ones [7]) to reveal the presence of hyperbolic
attractor [3,8], as well as for the different types of synchro-
nization detection (see, e.g., Refs. [9–13]).

To calculate the values of Lyapunov exponents effective
procedures and algorithms have been proposed [14–17].
In particular, in the case when the evolution operator is
known implicitly the spectrum of Lyapunov exponents can
be found easily by means of standard procedures based on
the numerical calculation of Lyapunov sums with the help
of the system evolution operator and its linearization, with
these approaches being applicable for both the system with
the small number of degrees of freedom [16,17] and the
spatially extended systems [4,18]. Nevertheless, sometimes
(e.g., for the experimental time series analysis) it is necessary
to compute Lyapunov exponents when the only one accessible
characteristic is the time realization of the system under study.
Several methods (see, e.g., Refs. [2,17,19–23]) allowing us to
estimate the one or two highest Lyapunov exponents from
time series are known. At the same time, not only is the
largest Lyapunov exponent value important to characterize the
system dynamics. For example, the zero Lyapunov exponent
plays a significant role for different phenomena, such as for
the quasiperiodic oscillations or for the different types of
the synchronous motion such as the phase synchronization
[24–27] or incomplete noise-induced synchronization [28].

The zero Lyapunov exponent exists necessarily in the Lya-
punov exponent spectrum of the flow system characterizing the
time evolution of the perturbation along the trajectory in the
phase space. For two coupled flow oscillators (which possesses
two zero Lyapunov exponents when the coupling strength
between them is equal to zero) one of the zero Lyapunov
exponents diverges from the zero value with the increase of
the coupling strength due to the enslaved phase dynamics.
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The zero Lyapunov exponent plays a crucial role in
synchronization phenomena. In particular, the transition of
such a Lyapunov exponent in the field of the negative values
is known to be closely connected with the onset of the
phase synchronization regime in both systems demonstrating
periodic dynamics in the presence of noise and chaotic
oscillators [24,29]. Moreover, the magnitude of the value
of the Lyapunov exponent corresponding to the enslaved
phase dynamics characterizes the degree of synchronism of
the interacting coupled systems; therefore, this Lyapunov
exponent value can be useful in many relevant circumstances
(e.g., physical, biological, or medical) to estimate the degree
of the synchronism of oscillations.

As has been mentioned above, the classical technique of
Wolf et al. [17] allows calculating only the largest exponents,
whereas, e.g., for two coupled chaotic systems the Lyapunov
exponent corresponding to the enslaved phase dynamics is
the fourth one. The estimation of each subsequent exponent
in the Lyapunov exponent spectrum becomes more and more
inaccurate. The use of the local mappings with higher-order
Taylor series (contrary to the linear one) improves the quality
of the Lyapunov exponent value estimation [30,31], but in
this case there are several aspects such as (1) the requirement
of the low level of noise, (2) the existence of some limit to
the number of exponents that can be accurately determined
from a given finite data set, and (3) spurious exponents being
generated. Additionally, this approach is rather complicated
and requires the calculations of added characteristics such as
the fractal dimension of the attractor and Lyapunov direction
vectors. So the estimation of the value of the Lyapunov
exponent corresponding to the enslaved phase dynamics is
a rather nontrivial and complicated task. Therefore, to obtain
this Lyapunov exponent value for the synchronization regime
different methods for the estimation of the Lyapunov exponent
from time series should be developed and used. In the present
paper we propose an effective method for estimation of the
conditional Lyapunov exponent corresponding to the enslaved
phase dynamics from time series of the nonautonomous or
coupled dynamical systems.

II. METHOD DESCRIPTION

The proposed method for the estimation of the value of
the Lyapunov exponent corresponding to the enslaved phase
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dynamics is based on the circle map [5,32,33] with noise

φn+1 = φn + 2�[1 − cos(φn − ψ)] − ε + ξn, mod 2π,

(1)

where φn plays the role of the phase difference, ξn is the noise
term, and � and ε are the control parameters.

The circle map is the classical model used frequently
to study nonlinear phenomena [34–36] including synchro-
nization [29] and phase locking [37,38]. The circle map
describes very precisely the behavior of the periodically forced
weakly nonlinear isochronous oscillator in the vicinity of the
synchronization threshold in the case of the small parameter
mistuning, since it may be considered as the discretization of
Adler’s equation [39], which, in turn, may be easily obtained
from the truncated equation [40,41] deduced in the framework
of the complex amplitude method. In the absence of noise
(D = 0) the tangential bifurcation takes place at εc = 0 in (1)
when the stable and unstable points

φs,u = ψ ∓ arccos

(
1 − ε

2�

)
+ 2πn, n ∈ Z (2)

touch each other in φc = ψ and disappear, which corresponds
to the synchronization threshold.

The very same model is also applicable to the chaotic
(or noised) oscillators with the phase coherent attractors
and small frequency detuning [29,42], since (1) under this
condition the chaotic oscillators may be modeled by a noised
periodic oscillator [13,29,43] and (2) the mechanisms of the
phase synchronization destruction and phenomena observed
in the vicinity of the synchronization boundary for the chaotic
and noised oscillators remain the same (but, masked by the
irregular dynamics) as in the case of the periodically forced
weakly nonlinear isochronous oscillator [27,29,42]. Therefore,
to estimate the value of the Lyapunov exponent corresponding
to the enslaved phase dynamics for the chaotic (or noised
oscillators) the circle map with the added noise term modeling
the chaotic dynamics (or random perturbations) is the very
appropriate model system.

Since the Lyapunov exponent under study is very close to
zero below the synchronization threshold [26,29], there is a
reason to consider its value only in the phase-locking regime
when the phase synchronization is observed and the Lyapunov
exponent value is negative. As far as the the model system (1)
is concerned, the positive values of the ε parameter with the
localization of φn around the stable fixed point φs correspond
to this type of dynamics of the driven flow oscillators.

When the values of the φn variable are localized around
the stable fixed point, the circle map may be linearized in the
neighborhood of φc to get the quadratic map

xn+1 = f (xn) + ξn = xn + �x2
n − ε + ξn (3)

describing perfectly the dynamics of the circle map around the
bifurcation point (here x = φ − ψ).

Due to the one-dimensional character of the system (3) its
Lyapunov exponent can be found as

�0(ε) = lim
n→∞

1

n

n−1∑
i=0

ln |f ′(xi)|, (4)

where xn is a time realization of the system (3), and
f ′(x) = 1 + 2�x is the derivative from the evolution operator
calculated analytically.

Taking into account the ergodicity of the considered
process, the time averaging can be substituted by the ensemble
one. In this case

�0(ε) =
∫ +∞

−∞
ρi(x) ln |f ′(x)| dx, (5)

where ρi(x) is the invariant probability density of the x

variable. In Ref. [42] we have shown that in the supercritical
region of the control parameter ε corresponding to the
synchronization regime of the flow systems the probability
density obeys the relation

ρ(x) = A exp

[
− 2

D

(
εx − �x3

3

)]
, x �

√
ε

�
, (6)

where A is the normalization factor and D is the noise variance.
Equation (6) obtained in Ref. [42] was deduced under the
assumption that noise term in (3) is δ-correlated Gaussian
noise [〈ξn〉 = 0, 〈ξnξm〉 = Dδ(n − m)], but many recent works
(e.g., Refs. [42,44,45]) give evidence that this assumption is
a rather redundant condition and the obtained relation may be
applied for the description of the synchronization phenomenon
in the presence not only of Gaussian noise, but also the other
types of random processes (e.g., with the uniform probability
distribution) as well as the deterministic chaotic perturbations.

The relation (6) describing the probability density ρ(x) is
applicable for x �

√
ε/� and reaches its maximum at point

xmax = −
√

ε

�
, (7)

which may be considered also as the linearization of Eq. (2)
obtained for the stable fixed point.

The phase-locking regime in the flow oscillators is modeled
by the discrete map (3) with ε/D2/3 � 1 when the values of
the xn variable are localized around the stable fixed point xmax

and the probability density ρ(x) decreases rather rapidly. As
a consequence, for x < x∗

1 = −2
√

ε/� and x > x∗
2 = √

ε/�

the value of ρ(x) may be estimated as zero, and, therefore, the
normalization factor A in (6) may be obtained with the help of
the normalization condition written as∫ x∗

2

x∗
1

ρ(x) dx = 1, (8)

whereas the value of the Lyapunov exponent under study can
be estimated by the formula

�0(ε) =
∫ x∗

2

x∗
1

ρ(x) ln |1 + 2�x| dx. (9)

In fact, for the experimental time series the probability density
decreases more rapidly; therefore, for practical purposes the
boundary values of the probability distribution in (8) and (9)
of phase differences may be taken as x1 > x∗

1 and x2 < x∗
2

values.
Having analyzed all assumptions made above, we can say

that the proposed method may be used to estimate the value of
the Lyapunov exponent corresponding to the enslaved phase
dynamics for the chaotic or noised oscillators with small
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frequency detuning and the phase coherent attractors being
in the phase-locking regime. To estimate the value of the
Lyapunov exponent, only the parameters ε, �, and D of
the probability distribution are required. These parameters
may be obtained with the help of the approximation of the
experimentally (or numerically) obtained distribution of the
phase differences ρ(�ϕ) of the interacting systems by the
theoretical distribution (6), e.g., with the help of the least
square technique [46].

In general, to estimate the value of the Lyapunov exponent
corresponding to the enslaved phase dynamics for the time
series obtained experimentally or numerically the following
steps must be done:

(1) Calculation of the phase difference quantity �ϕ(t)
sampled in time, i.e., �ϕn = �ϕ(tn), n = 0,1, . . . ,N . The
discretization appears in the natural way, since the initial time
series are already discretized. The phase difference �ϕ(t) may
be found as the difference between the instantaneous phases
of the interacting oscillators ϕ1,2(t), which, in turn, can be
introduced as the angles on the phase plane projections [25,43]
or with the help of the continuous wavelet transform [47–49].
If the initial time series are univariate, to introduce the
instantaneous phase as the angle on the phase plane projection
the delay-coordinate embedding method [50] should be also
used. Alternatively, the phase difference �ϕ(t) may be also
obtained with the help of the rotating plane approach [51–53].

(2) Plotting the obtained data on the plane (�ϕn+1,�ϕn)
and approximation of the obtained points by the quadratic
function a0 + a1x + a2x

2 (e.g., with the help of the least square
method) with the linear transformation of the phase difference
variable �ϕ in the form xn = �ϕn − ψ (where ψ = const)
to get the coefficient of the approximation to be a1 = 1. This
step is required for the simplified Eq. (3) to be used instead of
Eq. (1).

(3) Calculation of the probability density ρ(x) of the
obtained x variable.

(4) Finding the values of parameters �, D, and ε and
coefficient A by means of approximation of numerically
obtained distribution by the regularity (6) with normalization
condition (8).

(5) Finally, the estimation of the value of the Lyapunov
exponent corresponding to the enslaved phase dynamics with
the help of Eq. (9).

III. ESTIMATION OF VALUE OF THE LYAPUNOV
EXPONENT CORRESPONDING TO ENSLAVED PHASE

DYNAMICS IN MODEL SYSTEMS

In this section we consider the estimation of the value of
the Lyapunov exponent corresponding to the enslaved phase
dynamics for the several model systems both with discrete and
continuous time. As such test systems we have selected (1)
the quadratic and circle maps, (2) driven Van der Pol oscillator
with noise, and (3) two coupled chaotic Rössler oscillators.

A. Quadratic and circle maps

1. Quadratic map

We start the consideration from the discrete maps being the
base model of the method developed in the previous section.
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FIG. 1. (Color online) (a) Time realization of quadratic map (3)
for � = 0.1, ε = 0.008, D = 0.0001; (b) probability density ρ(x)
(histogram 1) obtained by time realization xn and its approximation by
regularity (6) at A = 1.07 × 10−13, � = 0.111 124, ε = 0.0087, D =
0.0001 (solid line), and analogous probability density ρ(x) (histogram
2) obtained by time realization xn for � = 0.1, ε = 0.0, D = 0.0001.

For the quadratic map (3) in the absence of noise the tangential
bifurcation takes place at εc = 0, which results in the transition
of the initially zero Lyapunov exponent to the negative values.
Later we fix the values of the control parameters as � = 0.1,
ε = 0.008, D = 0.0001 (which correspond to the supercritical
region ε > εc) and analyze the behavior of such a Lyapunov
exponent.

The idea of the proposed method is illustrated in Fig. 1.
Since we deal initially with the quadratic map, steps 1 and 2
should be omitted and the starting point in this case is step 3.
In Fig. 1 the time realization xn of system (3) for the selected
values of the control parameters (a) and probability density
ρ(x) obtained by time realization xn (histogram 1) as well as
its approximation by the regularity (6) with A = 1.07 × 10−13,
� = 0.111 124, ε = 0.0087, D = 0.0001 (solid line) (b) are
shown.

The values of the approximation parameters have been
defined in the following way. Parameter D has been computed
as an effective phase diffusion coefficient [54]. The relation
between parameters A, �, and ε has been found from the con-
dition of the coincidence of maxima of numerically obtained
probability density and regularity (6), i.e., from condition (7),
which results in the following connection between them:
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ε = 0.0784�, A = 14.2987 exp(−292.693�). The search for
the � parameter has been performed by least square method.
It is clearly seen that the parameters of approximation are
close to the initial values of the control parameters � and ε.
Substituting them into relation (9) and choosing x1 = −0.5,
x2 = 0 we obtain a value of �0 = −0.065, which is in a good
agreement with the value of Lyapunov exponent corresponding
to enslaved phase dynamics computed numerically by for-
mula (4).

Fig. 1(b) (histogram 2) obtained for ε = 0 illustrates
why the proposed method becomes worse approaching the
transition point εc. One can see that in this case the probability
distribution of the variable xn is not localized in the neigh-
bourhood of the certain fixed point. Since the assumptions
used for the derivation of Eq. (6) are not met, expression (6)
does not allow us to get the acceptable approximation of the
probability distribution ρ(x) [see histogram 2 in Fig. 1(b)],
and, as a consequence, the estimated value of the Lyapunov
exponent under study is not correct before and in proximity to
the transition point.

2. Circle maps

Let us apply the proposed approach to the other systems and
consider the circle map (1) being the more generalized model
of the synchronization phenomenon. The control parameter
values and characteristics of the noise signal we have chosen
are the same as in the case of the quadratic map (3) considered
above, ψ = 0.

Again, for the circle map (1) steps 3–5 should be imple-
mented. To calculate the dependence of the Lyapunov expo-
nent on the control parameter these steps should be repeated for
the several fixed values of the control parameter. Figure 2(a)
illustrates the dependence of the Lyapunov exponent under
consideration in the supercritical region (ε > 0) for the control
parameter ε. The results of application of the proposed method
are shown by filled circles and the solid line corresponds to
the Lyapunov exponent computed by Eq. (4). We clearly see
the good agreement between obtained data.

To illustrate the precision of the estimated value of the
Lyapunov exponent under consideration the dependence of the
relative error δ = |�̂0 − �0|/|�̂0| (where �0 is the estimated
value of the Lyapunov exponent corresponding to the enslaved
phase dynamics, and �̂0 is the Lyapunov exponent value
obtained with the help of the standard algorithm) on the
criticality parameter ε is shown in Fig. 2(b). As one can
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FIG. 2. (Color online) Dependencies of (a) Lyapunov exponent
�0 and (b) the relative error δ for the criticality parameter ε for the
circle map (1) with � = 0.1 in the presence of noise. In panel (a)
data obtained by means of the proposed method are marked by filled
circles; the results of application of a standard algorithm are shown
by the solid line.

see, the relative error δ is small in the whole range of the
criticality parameter values ε > 0 except for the narrow region
in the vicinity of the bifurcation point εc where the value
of δ tends to be large, since the proposed method becomes
worse approaching the transition point as has been discussed
above. In other words, the proposed method gives a good
estimation of the considered Lyapunov exponent value in the
large range of the control parameter values corresponding to
the synchronous regime. In turn, the area in the vicinity of the
critical point, where the relative error is sufficiently large, is
small in comparison with the range of the control parameter
values where the proposed method gives a good result. At the
same time, in the subcritical regime the Lyapunov exponent
under study is very close to zero, and, generally, there is no
reason to estimate the Lyapunov exponent value there. As a
consequence, the inapplicability of the proposed method in
this region cannot be considered as a disadvantage.

B. Van der Pole oscillator

As the next example we consider the classical Van der Pole
generator

ẍ − (λ − x2)ẋ + x = εsin(ωt) + Dξ (t) (10)

driven by the external harmonic signal in the presence of
additive noise. Here λ = 0.1 is the control parameter deter-
mining the system dynamics, ω = 0.98 and ε are frequency
and amplitude of the external signal, respectively, ξ (t) is δ-
correlated Gaussian noise [〈ξ (t)〉 = 0,〈ξ (t)ξ (τ )〉 = δ(t − τ )],
and D is its intensity. To integrate system (10) the Euler method
with the time step h = 5 × 10−4 has been used.

With the increase of the external signal amplitude ε the
initially zero Lyapunov exponent of system (10) passes in the
field of the negative values. In the absence of noise (D = 0)
it becomes negative for ε = εc = 0.0238 which corresponds
to the synchronization onset in the system under study. The
presence of noise results in the shift of the threshold value of
the synchronous regime onset in the field of the bigger values
of the external signal amplitude (εs = 0.029 for D = 1). At
that the transition of the Lyapunov exponent under study in
the negative field takes place a little bit earlier in comparison
with the noiseless case (see also Ref. [29]).

Let us apply the proposed method for estimation of the
value of the conditional Lyapunov exponent corresponding to
enslaved phase dynamics of system (10) with D = 1 from
time realization for ε > εs . The principles of calculation of
the Lyapunov exponent in such case are practically the same
as in the case of the discrete maps considered above. The
only one distinction consists in the fact that we should use
the time dependence of the phase difference �ϕ(t) between
the signal and the external force instead of the signal itself,
and, therefore, all steps 1–5 must be done to estimate the
value of the Lyapunov exponent corresponding to enslaved
phase dynamics. Due to the fact that nonautonomous system
demonstrates synchronous behavior for the selected values of
the external signal amplitude the phase difference �ϕ(t) < 2π

is locked, and the analyzed signal does not increase with time.
Figure 3(a) illustrates the time dependence of the phase

difference �ϕ(t) of the nonautonomous Van der Pole generator
for ε = 0.043, whereas in Fig. 3(b) the probability distribution
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FIG. 3. (Color online) (a) Time dependence of the phase dif-
ference �ϕ(t) of the nonautonomous Van der Pole generator (10)
for D = 1, ε = 0.043; (b) probability density ρ(�ϕ) (histogram)
obtained by the phase difference �ϕ(t) and its approximation
by regularity (6) at A = 1.47 × 10−82, � = 0.004 86, ε = 0.0029,
D = 0.0005 (solid line).

of the phase difference �ϕ(t) for the same values of the
control parameters and its approximation by the regularity (6)
are shown. The search for the parameters of approximation
has been performed in the same way as has been done for
the quadratic and circle maps described above. Parameter
D = Deff = 0.0005 has been defined as an effective phase
diffusion coefficient, whereas the other parameters A =
1.47 × 10−82, � = 0.004 86, and ε = 0.029 have been found
by the approximation of the probability distribution density.
Substitution of the values of such parameters in the relation (9)
with x1 = −3, x2 = −1 gives the value of the conditional
Lyapunov exponent �0 = −0.024, which agrees well with the
results of application of the Benettin algorithm [16].

Figure 4(a) shows the dependence of the considered
conditional Lyapunov exponent of system (10) on the external
signal amplitude ε in the supercritical region obtained by the
proposed method (dots) and Benettin algorithm [16] (solid
line). The relative error δ is given in Fig. 4(b). It is clearly
seen that as in the case of the circle map a good agreement
of the results of both methods takes place. As well as in the
case of the discrete map considered above the relative error
δ is small in the whole range of the criticality parameter
ε > εs values corresponding to the synchronous behavior of

-0.03

-0.02

-0.01

 0.03  0.04

Λ0

∈ 0.035  0.045 0.025

(a) (b)

∈
 0

 0.2
 0.4
 0.6
 0.8

 δ

 0.025  0.03  0.035  0.04  0.045

 ∈s

FIG. 4. (Color online) Dependencies of (a) conditional Lya-
punov exponent �0 corresponding to the enslaved phase dynamics
of nonautonomous Van der Pole generator (10) in the presence of
noise (D = 1) and (b) the relative error δ on the external signal
amplitude ε. In panel (a) data obtained by means of the proposed
method are marked by filled circles; the results of application of
Benettin algorithm are shown by the solid line. The boundary of the
synchronous regime in panel (b) is shown by the arrow.

the driven Van der Pole oscillator in the presence of noise [the
onset of the synchronous regime is shown in Fig. 4(b) with
the arrow]. One can see that the value of δ tends to be large
in the region corresponding to the pretransitional dynamics
(so-called eyelet intermittency; see Refs. [45,55]). Comparing
discrete map (1) with the dynamics of the driven noised Van
der Pole oscillator (10) one also must take into account that
the transitional point εc for (1) corresponds to the critical
point εc for (10), but not the synchronization boundary εS ,
and, therefore, the proposed method is applicable in the whole
region of the synchronous dynamics of the considered flow
system.

C. Two coupled Rössler systems

As the last example we consider the results of application
of the proposed method for the estimation of the value of the
conditional Lyapunov exponent corresponding to the enslaved
phase dynamics in the coupled chaotic systems. As the system
under study we use two unidirectionally coupled Rössler
systems

ẋd =−ωdyd − zd, ẏd = ωdxd + ayd,

żd = p + zd (xd − c), ẋr =−ωryr − zr + σ (xd − xr ), (11)

ẏr = ωrxr + ayr, żr = p + zr (xr − c),

where a = 0.15, p = 0.2, c = 10.0, ωd = 0.93, ωr = 0.95 are
the control parameter values, and σ is a coupling parameter
strength. The increase of the coupling parameter σ results in
the transition of the conditional Lyapunov exponent under
study in the field of the negative values. At that, as in
the case of nonautonomous Van der Pole generator, such a
transition precedes the phase synchronization regime onset in
system (11). So one can estimate the value of the conditional
Lyapunov exponent corresponding to the enslaved phase
dynamics by the analysis of the phase difference between
interacting systems in the same way as has been done for
the Van der Pole generator considered above.

Figure 5(a) illustrates the time dependence of the phase
difference �ϕ(t) of two coupled Rössler oscillators (11) for
σ = 0.07, whereas in Fig. 5(b) the probability distribution
of the phase difference �ϕ(t) for the same values of the
control parameters and its approximation by regularity (6)
are shown. The search of the parameters of approximation has
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FIG. 5. (Color online) (a) Time dependence of the phase differ-
ence �ϕ(t) of Rössler oscillators (11) for σ = 0.07; (b) probability
density ρ(�ϕ) (histogram) obtained by the phase difference �ϕ(t)
and its approximation by regularity (6) at A = 4.97 × 10−54, � =
0.0048, ε = 0.0617, D = 0.0024 (solid line).

been performed in the same way as has been done before for
the systems described above. Again, as well as for the other
systems considered above, there is a good agreement between
the distributions ρ(�ϕ) obtained numerically and predicted
theoretically.

It should be noted that the numerically obtained distribution
contains small heavy tails that results in its negligible deviation
from the theoretical regularity (6). At the same time, the
presence of such deviations does not influence sufficiently the
value of the Lyapunov exponent corresponding to the enslaved
phase dynamics calculated with the help of the deduced
distribution. In particular, Fig. 6(a) illustrates the dependence
of the conditional Lyapunov exponent corresponding to the
enslaved phase dynamics of Rössler oscillators (11) on the
coupling parameter σ in the phase synchronization region
obtained by the proposed method (marked by filled circles)
and Bennetin algorithm with Gram-Schmidt orthogonalization
procedure (solid line). The relative error value, δ, in turn,
is given in Fig. 6(b). It is clearly seen a good agreement
between obtained data in the whole range of the coupling
parameter strength corresponding to the phase synchronization
regime. As well as for the driven Van der Pole oscillator
with noise (10) the relative error δ takes the large values in
the region of the eyelet intermittency, whereas in the phase
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FIG. 6. (Color online) Dependencies of (a) conditional Lya-
punov exponent �0 corresponding to the enslaved phase dynamics
of Rössler oscillators (11) and (b) the relative error δ on the
coupling parameter σ . In panel (a) data obtained by means of the
proposed method are marked by points, the results of application of
Benettin algorithm with Gram-Schmidt orthogonalization procedure
are shown by solid line. The boundary of the phase synchronization
regime σPS in panel (b) is shown by the arrow.

synchronization regime the relative error is close to zero
and the estimated values of the Lyapunov exponent under
study coincide with good accuracy with the corresponding
values obtained with the help of Benettin algorithm and
Gram-Schmidt orthogonalization procedure.

IV. CONCLUSION

In conclusion, the method for the estimation of the
conditional Lyapunov exponent corresponding to the enslaved
phase dynamics from time realization has been proposed.
It allows to calculate the value of the Lyapunov exponent
in the supercritical region of the control parameters in both
the model systems with discrete time and nonautonomous
noise-driven periodic and chaotic oscillators. Although having
analyzed the error of the approximation of the probability
distribution ρ by the analytical expression (6) one can localize
the transition point, this localization is inaccurate and takes
more time in comparison with the classical method of the
phase difference examination [41]. As a consequence, the use
of the proposed method for the transition point detection seems
to be ineffective, whereas for the estimation of the Lyapunov
exponent values for the synchronous regimes it gives the good
results. As far as the subcritical regime (corresponding to the
asynchronous dynamics) is concerned, the Lyapunov exponent
under study is very close to zero there, and, therefore, the
inapplicability of the proposed method below the transition
point is not thought to be the disadvantage. In other words,
the proposed technique is applicable for the broad class of
the systems being in the regime of the phase synchronization.
We believe the proposed method can also be applied to real
experimental physical or physiological time series to define
the degree of synchronism of the regime realized in the
system.
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