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Abstract—A method is proposed for calculating the spectrum of Lyapunov exponents for spatially distributed
beam—plasma systems simulated by the large particle method. The effectiveness of the proposed approach is
demonstrated by the example of an electron reference system consisting of a Pierce diode and a model of a
low-voltage vircator as a source of broad-band microwave radiation.
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INTRODUCTION

Lyapunov exponents are a powerful mathematical
tool for analyzing the complex nonlinear dynamics of
systems with different natures [1]. However, effective
use of this tool is restricted mainly to systems with few
degrees of freedom [2]. At the same time, a wide class
of real systems and objects can be described using spa-
tially distributed dynamic variables. Spatially distrib-
uted models are widely used in particular for analyzing
processes that occur in the components and devices of
vacuum, plasma, and semiconductor electronics in
the microwave and THz ranges [3—5]. The problem
with applying Lyapunov exponents is in this case due
to the existing calculation algorithms used for systems
with few degrees of freedom being inapplicable for
analyzing systems with infinite dimensional phase
space. The algorithm used in [6] to calculate Lyapunov
exponents for spatially distributed beam—plasma sys-
tems is restricted only to models of the continuous
medium type (e.g., to hydrodynamic descriptions of
the electron flux), preventing us from analyzing the
spectra of Lyapunov exponents for a wide class of sys-
tems described by particle methods. When simulating
such systems in nonlinear modes of operation, the
overtaking and reflection of particles are typically
observed, rendering hydrodynamic descriptions inef-
fective. At the same time, the above are an important
class of electron and plasma systems, i.e., electromag-
netic radiation amplifiers and generators that exhibit a
wide range of nonlinear processes, making it of inter-
est to study the quantitative characteristics of their
nonlinear dynamics [7—10].

In this work, a method for calculating the spectrum
of Lyapunov exponents for spatially distributed beam—
plasma systems simulated using the large particle
method is proposed for the first time. The effectiveness
of the proposed approach is demonstrated by the exam-
ple of an electron reference system (a Pierce diode) and
a model of a promising source of broadband microwave
radiation (a low-voltage vircator) [3, 12].

INVESTIGATED SYSTEM
AND NUMERICAL MODEL

The Pierce diode chosen as our main object of
study is one of the simplest electron—plasma models.
Despite this, the system is capable of producing differ-
ent nonlinear phenomena, including random oscilla-
tions and the formation of structures [7, 11, 13]. The
Pierce diode is an interaction space formed by two
ground grid electrodes; a monoenergetic beam of elec-
trons is injected into the space at the input. The space
between the grids is filled with a neutralizing ion gas
whose density is equal to the nondisturbed density of
the electron flux charge.

In this work, the dynamics of an electron beam in
the Pierce diode in the mode of forming a virtual cath-
ode (VC) is considered. It is impossible to describe the
electron flux in the context of the hydrodynamic
model, due to the reflection of particles inside the flux.
When studying the complex nonlinear dynamics of
oscillations of a nonstationary virtual cathode, numer-
ical simulations using the particle-in-cell method [14]
are therefore used. In dimensionless variables, the

156



USING THE SPECTRUM OF LYAPUNOV EXPONENTS TO ANALYZE THE DYNAMICS 157

mathematical model based on the particle method has
the form [15—17]

i’? = —E(x), (1)
ot

2
00— 6 (p(x) ~ pion)- @)
ox
where E'is the field strength, x; is the coordinate of the
ith charged sheet, ¢ is the potential of the spatial
charge field, p(x)) is the density of the spatial charge in
anode with coordinate x;, p;o, is the density of the neu-
tralizing ion gas, and o = ®,L /v, is the Pierce param-
eter (where L is the length of the intergrid space and v,
is the unperturbed electron velocity). Equation (2) is
complemented by boundary conditions for the poten-
tial at grids of the Pierce diode ¢(x=0) = p(x=1) =0.

In a classical Pierce diode, p;,, = 1, and this is the
one that we consider in this work. In the context of the
above model, it is also possible to describe the dynam-
ics of a low-voltage vircator—a vacuum device of
microwave electronics in which the VC is formed due
both to the action of spatial charge forces and to addi-
tional deceleration of the beam in the drift space
[3, 16, 18, 19]. The simplest model of a low-voltage
vircator is also described by Egs. (1)—(3), but there is
no ion background (p;,, = 0) and the boundary condi-
tions for the potential are modified in the form
o(x=0)=0p(x=1)=—Ap, where A¢ is the difference
between decelerating potentials. In this work, we con-
sider the dynamics of the spectrum of Lyapunov expo-
nents in the low-voltage vircator model as our second
example.

METHOD FOR CALCULATING
LYAPUNOV EXPONENTS

It is well known that when calculating the spectrum
of Lyapunov exponents, it is necessary to consider the
set of small perturbations of the ground state of the
system in addition to the dynamics of this state. Apply-
ing the approaches used earlier in analyzing the hydro-
dynamic model of beam—plasma systems [6, 20] is in
this case difficult, since the state of system is charac-
terized both by parameters continuously distributed in
its space and by a set of discrete particles. The main
difficulties are associated with specifying a perturba-
tion and obtaining linearized equations that describe
the dynamics of a discrete set of particles. At the same
time, we can calculate linear perturbations from their
variations using equations that describe the beam in
the context of the continuous medium model [21]. Let
us consider this approach in more detail.

As in [6], we choose a set of spatial—temporal dis-
tributions U(x,?) = (p(x,1), v(x,f))T for the state of the
system. To calculate the initial N exponents, we con-
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sider a set of perturbations in density and velocities

Vix,t) = (E)(x,1),E°(x,1)), i = 1, ..., N, satisfying the
conditions of normalization and orthogonality. Such a
set of perturbations can be obtained by means of stan-
dard Gram—Schmidt orthogonalization [1]. Note that
the distribution of the potential and its perturbations
are excluded from the states of the system, since these
parameters can be uniquely expressed via the charge
density by using the Poisson equation [6].

Aswas mentioned above, one feature of the method
is using a system of continuum equations (hydrody-
namic equations) linearized in the neighborhood of
the state U(x, ) to describe the dynamics in time and
perturbation space. The joint solution to the initial
equations of model (1)—(3) for finding the reference
state and linear hydrodynamic equations for perturba-
tions allows us to estimate the spectrum of Lyapunov
exponents. To accomplish this, the set of perturbations
is subjected to Gram—Schmidt orthogonalization
after some period 7 chosen empirically. This process is

repeated M times, and sums S; = Z,A;ln"Vi (x, jT)",

where I7i(x, jT) is the distribution of the ith perturba-
tion before renormalization but after orthogonaliza-
tion. The values of the Lyapunov exponents are deter-
mined as [6]

S.
=—t 3
U7 3
Applying the above approach to analyzing the elec-
tron flux dynamics in our systems demonstrated the
high efficiency of this method in obtaining a quantita-
tive estimate of the random behavior of spatially dis-
tributed beam—plasma systems.

i

RESULTS FROM CALCULATING
THE SPECTRUM OF LYAPUNOV EXPONENTS

Let us consider our results from calculating the
spectrum of Lyapunov exponents for the investigated
model systems. We begin with the Pierce diode, for
which it is well known that a VC is formed in the sys-
tem in the range of the controlling Pierce parameter
o = [, 2nt] and the beam dynamic is characterized by
complex, irregular oscillations over the range of con-
trolling parameter variation. The Lyapunov exponent
spectrum constructed for this case (Fig. 1) contains
positive exponents, corresponding to random dynam-
ics. It is interesting that the hyperchaos mode is
observed in the system at a. < 4.7, as is indicated by the
two positive Lyapunov exponents. This is in good
agreement with the established results: the complexity
of oscillations in the Pierce diode declines with an
increase in the Pierce parameter.

The results from calculating the spectrum of
Lyapunov exponents for a low-voltage vircator with
varying decelerating potential and fixed Pierce param-
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Fig. 1. Five senior Lyapunov exponents as functions of
controlling parameter o for the Pierce diode.

eter a < 0.9 are presented in Fig. 2. The obtained spec-
trum of Lyapunov exponents reflects the behavior of the
system with variation in the decelerating difference of
potentials. It can be seen that the electron beam exhibits
both periodic (0.36 < Ap < 0.41 and 0.58 < Agp < 0.69)
and random (0.4 < A < 0.58) dynamics with variations
in the decelerating field in the interaction space. In the
region of 0.53 < Ap < 0.55, the system transitions to
the hyperchaos mode, as is indicated by the two posi-
tive exponents in the spectrum. Our results from cal-
culating the spectrum of Lyapunov exponents agree
well with the other methods for theoretical and exper-
imental analysis of vircator dynamics presented in
[3, 16, 18, 19, 22]. The hyperchaos mode corresponds
in particular to the most complicated oscillation mode
in the system; periodical modes were also observed at
low and high decelerating potentials.

CONCLUSIONS

The question of calculating the spectrum of
Lyapunov exponents for spatially distributed beam—
plasma systems simulated by the large particle (parti-
cle-in-cell) method was examined in this work. An
electron reference system consisting of a Pierce diode
in the mode of VC formation and a low-voltage virca-
tor were chosen for our objects of study. Even though
the behavior of such a system can be described by the
large particle method, the dynamics of small perturba-
tions of the ground state can be simulated using hydro-
dynamic equations linearized in a neighborhood of the
reference path. In simulating the dynamics of the sys-
tem jointly with small perturbations and applying
Gram—Schmidt orthogonalization, the spectra of
Lyapunov exponents were thus calculated for model
systems. It was shown for the first time that, depending
on the magnitude of the decelerating potential, the
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Fig. 2. Five senior Lyapunov exponents as functions of
controlling parameter A¢ for the low-voltage vircator
model, constructed at o = 0.9.

considered system can exhibit both periodic dynamics
and complex random modes that include hyperchaos.
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