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Abstract. Topology of a functional brain multilayer network is dynam-
ically adjusted to provide optimal performance during accomplishing
cognitive tasks, including sensory information processing. Functional
connectivity between brain regions is achieved in terms of correlation
or synchronization inference in recorded signals of neuronal activity.
The promising approach for studying cortical network structure im-
plies considering functional interactions in different frequency bands on
the different layers of multilayer network model. Links between these
layers can be restored based on cross-frequency couplings. While the
topology of functional connectivity within each layer can be effectively
restored from registered neurophysiological signals, mechanisms un-
derlying coupling between different layers remain poorly understood.
Here we consider evolution of the cortical network topology in alpha
and beta frequency bands during visual stimuli processing. For each
frequency band the functional connectivity between different brain re-
gions is estimated by comparing Fourier spectra of EEG signals. The
obtained functional topologies are considered as the layers of two-layer
network. In the framework of a multilayer model we analyze evolution
of functional network topology on both layers and reveal features of
intralayer interaction underlying visual information processing in the
brain.

1 Introduction

Topology of a cortical brain network is dynamically adjusted to provide optimal
performance during accomplishing cognitive tasks, including sensory information
processing [1–4]. For instance, a small amount of visual information which can effort-
lessly be processed activates neural populations in occipital and parietal areas. Con-
versely, a visual task which requires sustained attention to process a large amount of
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sensory information involves a set of long-distance connections between parietal and
frontal areas coordinating the activity of these distant brain regions [5,6]. Accord-
ing to the recent review [7], mechanisms of neural interactions within the cortical
network underlying cognitive performance are poorly understood.

The cortical brain network is usually studied by topology reconstruction from a
set of multichannel recordings of neuronal activity (fMRI, fNIRS, EEG, MEG, etc.).
Here, functional connectivity between the brain regions is achieved in terms of corre-
lation or synchronization inference in recorded signals. There are several techniques
which are used to estimate a functional connectivity. In particular, functional con-
nectivity can be measured via Granger causality [8], nonlinear correlations [9] and
entropy transfer methods [10].

According to recent study [11], neural interactions between the brain regions
are subserved by coherence of registered signals of brain activity. Therefore, the
coupling strength between brain regions can be estimated by measuring coherence
of the corresponding neurophysiological signals. One of the effective approaches to
evaluate coherence in a pair of signals is the wavelet bicoherence (WBC). WBC
measures the amount of phase coupling in the time interval that occurs between
wavelet components of considered signals. WBC is a powerful tool for biological
signal analysis [4,12–14].

As WBC implies, the coherence between signals can be measured in different
frequency bands simultaneously. This is of a particular interest for analysis of the
cortical network, since the neural ensembles interact through different bands [11,15].
In particular, recent work [14,16] reports that neuronal populations belonging to the
remote brain regions interact in different frequency bands with different degrees of
intensity. Authors reconstructed topology of the brain links in different frequency
bands and found different structures associated with normal brain state and patho-
logical behavior. During sensory processing tasks the neural populations in visual
cortex are shown to interact in 8–30 Hz and 50–70 Hz [8,17]. Moreover, according to
recent work [18], visual sensory processing engages neuronal interactions in 8–12 Hz
(alpha-band) and 15–30 Hz (beta-band) with different topological properties.

Thus, considering the neural interactions in the different frequency bands is a
promising approach for understanding functions of the cortical brain network. In the
framework of this approach, interactions between the neuronal populations can be
described in terms of multilayer network, where each layer represents the coupling
topology in a particular frequency band. Whereas the topology of neural interactions
in each layer can be effectively restored from registered neurophysiological electroen-
cephalographical (EEG) signals, mechanisms underlying coupling strength between
different layers remain poorly understood [4,19].

According to Canolty et al. [20], there is a robust coupling between the high- and
low-frequency bands of electrical activity in the human brain. In particular, the phase
of theta-rhythm (4–8 Hz) modulates power of gamma-rhythm (80–150 Hz) oscillations
on the electrocorticograms (ECoG). Furthermore, different behavioral tasks evoke
distinct patterns of theta/gamma band couplings across the cortex. For instance,
continuous mental arithmetic tasks demanding the retention and summation of items
in the working memory enhanced the cross-frequency phase synchrony among alpha,
beta-, and gamma-oscillations [21]. Therefore, along with the neural interactions in
a particular frequency bands, analysis of interlayer (cross-frequency) coupling is of
great interest and remains an actively studied topic in physics and neuroscience
[22,23].

Having summarized, the promising approach for studying cortical network struc-
ture implies considering neural interactions in different frequency bands on the
different layers of multilayer network model. Links between these layers can be
restored based on cross-frequency coupling. Experimental results evidence that brain
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Fig. 1. Illustration of bistable visual stimuli and experimental procedure. (a) Images of
Necker cube depending on edges contrast g. (b) Subsets of easy and hard visual stimuli
used during the experiment. (c) Sketch illustrating experimental procedure – visual stimuli
was presented at time moments represented by arrows and demonstrated for about 0.5 s.
Time interval between visual stimuli presentations was about 1.5 s.

functioning affects both within-frequency (inter-layer) synchrony in different fre-
quency bands and the cross-frequency (intra-layer) phase synchrony between them.
With this in mind we consider evolution of the cortical network topology in alpha
and beta frequency bands during visual sensory processing. For each frequency band
the coupling strength between different brain regions was estimated by comparing
Fourier spectra of the corresponding EEG signals. As it has been shown [14] this
approach enables restoring functional connectivity based on the degree of phase syn-
chronization between EEG signals. Having analyzed the evolution of layer’s topology
in time, we reveal the typical scenarios of cortical network reconfiguration during
visual stimuli processing.

2 Methods

2.1 Experimental procedure and participants

Ten healthy subjects from a research team of Innopolis University, males and females,
between the ages of 20 and 30 with normal or corrected-to-normal visual acuity
participated in the experiments. All participants provided informed written consent
before participating in the experiment. The experimental studies were performed in
accordance with the Declaration of Helsinki and approved by the local research ethics
committee of Innopolis University.

During the experiment the participants were asked to interpret a bistable visual
stimulus demonstrated on the screen in front of them. The Necker cube [24–27], which
is presented as a 2D image of cube with transparent faces and visible edges, was used
as a bistable visual stimulus.

A subject without any perception abnormalities sees the Necker cube as a 3D-
object due to the specific position of the cube’s edges. Bistability in perception
consists in the interpretation of this 3D-object as to be either left-oriented or right-
oriented cube depending on the contrast of different inner edges of the cube. The
contrast g ∈ [0, 1] of the three inner lines centered in the left lower corner is used as
a control parameter. The contrast of the other three inner lines centered in the right
upper corner was set to (1− g). The values g = 1 and g = 0 correspond, respectively,
to 0 (black) and 255 (white) pixels’ luminance of the inner lines. Therefore, we can
define a contrast parameter as g = y/255, where y is the brightness level of the inner
lines using the 8-bit gray-scale palette. The examples of Necker-cube images with
different values of g–parameter are shown in Figure 1a.

The whole set of Necker cubes included images with eight different values of con-
trol parameter: g = (0.15, 0.25, 0.4, 0.45, 0.55, 0.60, 0.75, 0.85). Each image was pre-
sented 20 times, i.e. 160 times for all set. In order to capture the first impression of the
participant each bistable image was demonstrated during 0.5–0.7 s with an interval
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Fig. 2. Schematic representation of the algorithm for reconstructing multilayer functional
network from experimental EEG data.

of about 1.5 s between demonstrations [28] (Fig. 1b). The stimuli were demonstrated
on a 24′′ LCD monitor with a spatial resolution of 1920 × 1080 pixels and a 60 Hz
refresh rate. Each Necker cube image with black and grey ribs was displayed in the
middle of a computer screen on a white background. The subjects were sitting at a
70–80 cm distance from the monitor with an approximately 0.25-rad visual angle.

EEG data were acquired with 19 noninvasive electrodes located according to
“10-20” electrode layout. To register EEG data, cup adhesive Ag/AgCl electrodes
were placed on the scalp with the help of “Tien–20” paste. The ground electrode
was located above the forehead, while referents were attached to mastoids. For fil-
tering EEG signals, a band-pass filter with cut-off points at 0.016 Hz (HP) and
70 Hz (LP) and a 50 Hz Notch filter were used. For EEG signal amplification and
analog-to-digital conversion, the electroencephalograph “Encephalan–EEGR–19/26”
(“Medikom-MTD”, Taganrog, Russian Federation) with multiple EEG channels was
used.

2.2 Multilayer network reconstruction

Functional connectivity between the distinct neuronal populations was reconstructed
from the recorded multichannel EEG signals in alpha (8–14 Hz) and beta (15–30 Hz)
frequency bands. The functional relation between a pair of neuronal populations
was assessed in terms of phase synchronization between corresponding EEG signals.
According to a recent work [14], phase synchronization between neural populations
reflects a similarity between the features of their oscillatory activity in a frequency
domain on short time scales. Thus, to reconstruct the functional connectivity between
neuronal ensembles in alpha and beta frequency bands we compared the spectral com-
ponents of their EEG signals belonging to these bands. A Schematic representation
of network reconstruction algorithm is presented in Figure 2. It is implemented in
three steps.

– EEG data were cut into a set of 1 second trials associated with visual stimuli pre-
sentation (Fig. 2a, upper panel). Then, x(t) = {x1(t), ...xNch

(t)}T was considered
as a multivariate EEG trial that included background activity (0.5 s prior visual
stimuli presentation as shown in Fig. 1b) and perception phase (0.5 s after visual
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stimuli presentation as shown in Fig. 1b), Nch is the number of considered EEG
channels. The stimulus-related changes in frequency domain ∆Fi is defined for
ith EEG channel as a difference between Fourier spectra calculated during the
perception phase and background

∆Fi(f) =
1√
2π

 0.5 s∫
0

xi(t)e−j2πftdt−
0∫

−0.5 s

xi(t)e−j2πftdt

 . (1)

In Figure 2b the obtained coefficients ∆Fi are arranged in the form of matrix
where each row corresponds to EEG channel and each column to the single trial.

– The weighted functional links between ith and jth EEG channels in alpha and
beta bands were reconstructed based on pair-wise distance between stimulus-
related changes ∆Fi and ∆Fj ,

wαij =


√√√√√ 14 Hz∫
f=8 Hz

(∆Fi(f)−∆Fj(f))2


−1

, (2)

wβij =


√√√√√ 30 Hz∫
f=15 Hz

(∆Fi(f)−∆Fj(f))2


−1

. (3)

Obtained weights wα,βij were averaged over all trials. As a result, reconstructed
network represented a fully-connected weighted graph.

– To extract significant links in reconstructed network, we applied thresholding
and constructed binary adjacency matrices Wα and W β that contained only
strong links belonging to the range between 80th and 99th percentiles of weight
distribution CDF(w) (Fig. 2c, left panel). Thus, reconstructed network took the
form of sparse unweighted two-layer network, where each layer reflected functional
connectivity in alpha and beta frequency ranges (Fig. 2c, right panel).

Using the reconstructed two-layer network we have analyzed the dynamics of
functional connectivity during sensory information processing. For this purpose the
network reconstruction algorithm was applied in a 0.5 s floating window. The current
position of the window was defined by τ which corresponded to the right border of
the window. As a result, equation (1) was rewritten in window-like form

∆Fi(f, τ) =
1√
2π

 τ∫
τ−0.5 s

xi(t)e−j2πft dt−
0∫

−0.5 s

xi(t)e−j2πft dt

 , (4)

where the second term in the brackets remained unchanged and defined EEG spectral
properties during the background and the first term reflected spectral properties in
a floating window during perception.

To characterize a collective behavior in both alpha and beta layers of considered
two-layer network we have introduced a measure of topological similarity σ as follows:

σ =
1
N2
ch

Nch∑
i=1

Nch∑
j=1

Wα
i,j ◦W

β
i,j , (5)

where ◦ stand for the element-wise multiplication. In this definition σ = 0 indicated
no topological similarity (identity) between network layers, whereas σ = 1 evidenced
complete similarity of layers’ topology.
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Fig. 3. Typical dynamics of two-layer network topology during the visual task performance
captured from a single subject. (a) Dependence of topological similarity (5) on time τ . (b)
Evolution of brain functional connectivity within alpha and beta layers of considered net-
work. Characteristic times τ1,2,3 corresponding to the presented brain graphs are indicated
with arrows in lower plots.

3 Results of experimental EEG data analysis

Figure 3 illustrates the temporal evolution of reconstructed two-layer functional cor-
tical network in alpha and beta frequency bands during the processing of a bistable
visual stimulus. A curve in Figure 3a is a dependence of a topological similarity σ (5)
on time. Figure 3b demonstrates the topologies of functional connectivity in alpha
(upper row) and beta (lower row) frequency bands for different moments of time:
τ1 = 0.04, τ2 = 0.2, τ3 = 0.5 s (these moments are shown in Fig. 3a by the arrows).
The node size corresponds to the node degree (the number of links incident to the
node). Illustration is based on the data of a single participant. At the same time,
uncovered network behavior is typical and well-reproduced in a group of subjects
and individual differences are only related with a slight variance of functional brain
network topology.

At the moment of visual stimuli presentation (τ1) the measure of similarity σ
reaches 0.55 and the topology of functional connectivity in alpha and beta layers are
quite different. Figure 3b shows that alpha layer demonstrates the poor involvement
of occipito-parietal network (O and P EEG channels) which are associated with
primary processing of visual information. The node corresponding to electrode O1
location is characterized by a high degree, due to a high number of large-scale links
which couple frontal-temporal and occipito-parietal areas (O1–F4, O1–F8, O1–T4).
The beta layer is characterized by a high degree of frontal nodes (Fp1 and Fp2), which
have functional links with other frontal areas and with more remote somatosensory
(Fp2–Cz, Fp2–C4) and parietal (Fp2–P4) areas.

When approaching the time moment τ2, topology of functional connectivity has
been changed in both alpha and beta layers. It is reflected in the measure of sim-
ilarity σ reaching 0.65. One can see from Figure 3b, that large-scale links in alpha
layer become less pronounced and node degrees are uniformly distributed across the
network. The highest node degree is observed in somatosensory area which is caused
by a functional connectivity between occipito-parietal and frontal areas through a Cz
EEG channel. At the same time, the EEG channels in occipito-parietal area become
highly connected on the beta layer having a pronounced hub at the Pz EEG chan-
nel. It indicates a strong involvement of the primary visual processing area into the
perception of the visual stimuli. In both layers a somatosensory area (C3, Cz and
C4 EEG channels) exhibits a large number of links and acts as a “bridge” between
occipito-parietal and frontal areas.
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Fig. 4. (a) Considered brain areas: occipito-parietal area (OP), frontal area (F),
somatosensory-temporal area (ST). (b) Histograms representing dynamics of total num-
ber, N , of links in OP (blue column), F (green column) and ST (red column) brain areas
during the process of visual task performance collected over all participants in alpha (left
panel) and beta (right panel) layers.

With the further increase of time in the sensory information processing up to τ3,
both alpha and beta layers demonstrate almost identical topology with σ ≈ 0.85. One
can conclude that during the process of visual stimuli perception multilayer functional
cortical brain network is trying to fit an optimal structure providing an efficient use
of cognitive brain resources to perform a certain visual task. Moreover, one can see
that the frontal area, which is known to be associated with attention and decision-
making [29], is not so actively engaged in visual stimuli processing compared to the
occipito-parietal area in the final topology of brain functional connectivity. This may
be due to the characteristics of the task assigned to the participants. The point is that
visual stimuli were demonstrated for a very short time interval in order to capture
the participant’s first impression. Therefore, the participants of the experiment do
not have enough time to fully focus on the visual stimulus, analyze it and make a
decision on what he saw based on the provided analysis.

To compare the mechanisms of functional connectivity dynamics in a group of
participants and find significant network properties we analyzed the evolution of
characteristics, which reflect integral properties of multilayer functional brain network
behavior. For such a characteristic we have considered the total number of links in
different brain areas: occipito-parietal area (OP), frontal area (F) and somatosensory-
temporal area (ST) (see Fig. 4a). For all 10 participants a significant increase in the
link numbers in the OP area have been observed by the end of the visual stimuli
demonstration in both alpha and beta layers (p < 0.05 via Wilcoxon test). On the
contrary, the link number in the F area has decreased significantly in both layers as
well (p < 0.05 via Wilcoxon test). At the same time, the number of links in the ST
area did not perform significant changes (p > 0.05 via Wilcoxon test). Such behavior
evidences the fact that during visual task performance functional network properties
in separate layers evolve in a similar way. In particular, there is a tendency to activate
occipito-parietal area and to decrease frontal area involvement. We can also conclude
that somatosensory area is not significantly involved in visual perception task.
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4 Conclusion

It is well-known that neural activity in alpha- and beta-bands is associated with
the different types of perception. Changes in alpha-band activity are associated with
the visual [30] or auditory attention [31] and variation of beta-waves energy – with the
cognitive activity, related to the stimuli processing [32] and the shift of the brain to an
attention state [33]. Role of the alpha/beta–band activity in the perceptual process
is also reported in the context of the information transfer in the visual areas [8].

During visual information processing the beta-band activity plays the leading role
[33]. For instance, beta–activity is associated with the excitation of neural ensembles,
belonging to the “visual” area, located in the occipital lobe and the “attentional”
area, located in the parietal lobe [34]. Alpha and beta oscillatory rhythms of the
neural brain activity contribute to the neural communication between the different
regions of the visual cortex [8,18].

In this paper we considered the evolution of the cortical network topology in
alpha and beta frequency bands during visual sensory processing directed on captur-
ing the first impression of participant. Two-layer cortical network was constructed
via a pair-wise comparison of Fourier spectra of the corresponding EEG signals in
specific frequency ranges, namely alpha (8–1 Hz) and beta (15–30 Hz) bands. Results
obtained in this study lie in a course of modern theory of neural interactions stand-
ing behind the sensory processing performed in brain cortical network. Together with
well-known mechanisms of stimulus-related brain activity in the occipito-parietal area
we demonstrated an important role of the alpha and beta-band brain activity in a dis-
tributed cortical network. Having analyzed the evolution of layer’s topology in time,
we revealed the typical mechanisms of the cortical network cooperative reconfigura-
tion during visual stimuli processing. Despite the fact that alpha and beta activities
are usually associated with different processes, neural interactions within these fre-
quency bands evolve in a similar way. We uncovered that during sensory processing
network topology in both layers’ changes in time in a way to optimize neural inter-
actions in cortical network. In particular, network evolution aims at the activation of
neural interactions in the occipito-parietal area responsible for primary visual pro-
cessing and decreases the involvement of frontal area. We show that the described
properties of the multilayer cortical network topology, which determine mechanisms
of neural interactions during visual information processing, strongly depend on visual
task complexity. By contrast, they are not crucially affected by the orientation of the
Necker cube image. This is due to the specificity of the visual task assigned to the
participants, which is focused on capturing their first impression, but not the process
of image interpretation or decision-making.

This work has been supported by the Russian Science Foundation (Grant 17-72-30003).
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Grubov, A.E. Runnova, V.V. Makarov, J. Kurths, A.N. Pisarchik, Front. Neurosci. 12,
949 (2018)

28. R.H.S. Carpenter, Biocybern. Biomed. Eng. 32, 49 (2012)
29. A.E. Hramov, N.S. Frolov, V.A. Maksimenko, V.V. Makarov, A.A. Koronovskii,

J. Garcia-Prieto, L.F. Antón-Toro, F. Maestú, A.N. Pisarchik, Chaos Interdiscip. J.
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