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Abstract In this paper, we present the results of spectral, complexity and functional connectivity analysis
of EEG signals recorded during VR-based experimental session in two groups of subjects. We focus on the
analysis of aging biomarkers associated with theta-rhythm alterations associated with sensorimotor task
performance. Recurrence quantification analysis-based measures of EEG complexity show the potential to
reveal the aging indicators that are otherwise omitted by the conventional spectral power analysis, demon-
strating that the group of elderly subjects induce the neural activity associated with working memory load
more actively during the sequential sensorimotor integration task performance. The RQA is supplemented
by the functional connectivity analysis, revealing the hyper-compensation in the eldelry group of subjects.

1 Introduction

Research based on the analysis of neurophysiological signals involves the development of effective mathematical
methods for detecting, classifying, and processing biomarkers of various types of human activity. Variability of
the effects on EEG signals can be observed on the level of group as well as on the level of subject from one
experiment to another, which significantly complicates the identification of reliable neurophysiological patterns
[1]. In particular, developing methods capable of accurately identifying neurophysiological effects of interest from
individual fragments of EEG signals is of high scientific significance, which is especially important for the develop-
ment of brain-computer interfaces operating in real time. In addition, an important requirement for mathematical
methods of processing EEG signals is the interpretability of the results, which is especially important in the field
of application of machine learning and artificial intelligence methods in clinical neurorehabilitation [2, 3].

In the present paper, we propose an approach for analyzing signals of electrical activity of the sensorimotor
system of the brain to identify biomarkers of healthy aging. With age, the human body undergoes structural
changes affecting many physiological processes, including a decrease in the thickness of the cortex, a decrease in
the volume of gray and white matter, and a decrease in the elasticity of blood vessels. According to the World
Health Organization, age-related diseases of the nervous system are one of the leading causes of death in 2019 [4].
At the same time, neurodegenerative processes caused by aging have a significant impact on the quality of life
of the older population, and their diagnosis is quite a complex task. In this context, dysfunctions of the human
sensorimotor system revealed by EEG analysis can act as relevant markers of age-related changes. Sensorimotor
integration is a multifactorial interaction of various brain regions in the process of forming a motor response to
external multimodal stimuli, and includes the simultaneous involvement of cognitive, motor and perceptual activity
[5, 6].

We propose a complex approach to analyze EEG data recorded during VR-based experiment involving sensori-
motor area activation in different age groups of subjects. We demonstrated that theta rhythm plays a crucial role
in the detection of age-related changes in the neural processing of motor tasks. Besides, we show that recurrence
quantification analysis of EEG time series allows us to reveal how neural reaction on motor preparation alters with
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advanced age, possibly uncovering the underlying cognitive mechanisms of sensorimotor integration, otherwise
undetected by traditional spectral features of EEG.

2 Methods

2.1 Dataset

The VR-based sensorimotor integration experiment was conducted by the Institute of Neurosciences of Samara
State Medical University. The experiment was aimed at recording a complex sensorimotor response to target
visual and auditory stimuli in several age groups of subjects. The following equipment was used: a Faraday cage,
a BrainAmp128 EEG amplifier system (64 channels, sampling frequency – 500 Hz), Oculus Rift VR glasses,
virtual environment software with audio-visual stimuli, a gamepad, an infrared camera and an audio system for
communication with subjects. The subjects were seated in a comfortable chair for neurophysiological experiments.
They were instructed to identify target auditory and visual stimuli by pressing the gamepad button when presented
with target stimuli and ignoring non-target ones. All subjects were right-handed and, therefore, were holding the
gamepad with their right hand. The experimental environment was implemented as a VR mini-game “fishing”,
with the target stimuli being the croaking of a frog (audio) and the complete immersion of a float underwater
(visual). The experiment involved 54 subjects divided into 5 age groups:

1. group I – 19–25 y.o., 18 subjects (9F);
2. group II – 26–35 y.o., 9 subjects (3F);
3. group III – 36–55 y.o., 9 subjects (7F);
4. group IV – 57–65 y.o., 9 subjects (6F);
5. group V – 65–76 y.o., 9 subjects (6F);

For each subject, the auditory and visual stimuli were presented in the course of single experimental session that
lasted for approx. 10 min. For the present study, we used the auditory part of the experiment and conducted the
research on group I (young adults, YA) and merged IV and V groups (elderly adult, EA). We sliced EEG signals
into epochs time-locked at [−2, 5] seconds in accordance with stimuli presentation. For each subject, we’ve selected
25 manually inspected epochs to proceed with the research.

2.2 Time-frequency analysis

We used continuous wavelet transform (CWT) [7] in the theta range (5–8 Hz) with Morlet mother wavelet to
reveal age-specific spectral biomarkers of sensorimotor integration in different age groups. A similar approach was
previously applied to the motor-related alpha- and beta-rhythms to analyze the motor-related activity [8]. In the
present research, however, we focus on the theta-rhythm, as it was previously shown the great potential in revealing
age-related alterations of the brain sensorimotor system [9].

The epochs for each age group of subjects were tested using the cluster permutation t-test in the spatio-temporal
domain. The CWT and permutation tests were calculated using MNE package for Python [10].

2.3 Functional connectivity

As a result of time-frequency analysis, we defined the time intervals of interest to show the topology of functional
connectivity network on the different stages of the VR-based sensorimotor task performance. We chose phase lag
index (PLI) as a coupling metric [11, 12]. PLI measures phase synchronization and, at the same time, avoids the
underlying problems inherent for sensor-level EEG analysis. In particular, PLI levels out the common sources
problem by introducing an asymmetry index for the distribution of the phase differences between two-time series
centered around 0 mod π:

PLI = |< sign[Δφ(tk)] > |, (1)

where k = 1...N , < ... > operator means time averaging and N is a number of samples. PLI takes value between 0
and 1, 0 meaning no synchronization (or coupling with Δφ(tk) around 0 mod π), and 1 corresponding to perfect
phase locking.

For the chosen FOIs, we calculated 62 × 62 adjacency matrices. We applied network-based statistic [13] to
analyze between-group differences in functional connectivity topologies. PLI was calculated using SciPy library
for Python [14], and network-based statistic was implemented using Brain Connectivity Toolbox for Python.
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2.4 Recurrence quantification analysis

Recurrence quantification analysis (RQA) is a toolbox for numerical interpretation of recurrence plots (RPs).
Introduced by Eckmann [15] in 1987, PRs efficiently visualize recurrences of dynamical systems through analysis of
corresponding time series and allow to interpret the dynamical properties of the systems based on RP’s appearance.
RQA measures allowed us to quantify the “black” and “white” structures formed by recurrent and non-recurrent
dots on RP, respectively.

RPs are constructed from time series. The classic approach is to determine the embedding of the system using
Taken’s theorem [16] and chosen values of embedding dimension m and delay τ . For each EEG epoch, we calculated
m using the false nearest neighbors method, and τ using the mutual information method. Since those values
deviated slightly for each epoch, we chose the median values of dataset m = 4 and τ = 13.

The incorrect choice of embedding parameters can greatly affect the result of RP calculation and cause misrep-
resentation of important features of the time series. To compensate for the possible distortion of the results caused
by the deviation of the chosen median embedding values, we used a method to calculate the recurrence threshold
ε proposed by Kraemer et al. [17], according to which ε is is set as the 4th percentile of the distribution of pairwise
distances.

We performed windowed RQA on the global RP with a window size of 500 d.p. (1 s of recording) and step of 10
d.p. (20 ms of recording) and obtained time dependencies of determinism (DET), laminarity (LAM), recurrence
rate (RR) and recurrence time entropy (RTE) RQA measures. In further analysis, we considered the variations of
these measures from the pre-stimulus level ΔDET , ΔLAM , ΔRR and ΔRTE by extracting the corresponding
mean baseline values.

RQA was implemented using DynamicalSystems library for Julia [18].

3 Results

3.1 Time-frequency analysis

We show (see Fig. 1a) that elderly subjects demonstrate ERD in theta rhythm (5–8 Hz) after the motor execution
(fcrit = 7.26, pcrit = 0.01). This effect is widespread, encompassing 41 sensors in bilateral parieto-occipital lobe
and left and right central and fronto-central areas.

3.2 RQA

Figure 2 shows the spatio-temporal clusters identified via between-groups permutation test for RQA measures
calculated for theta-rhythm. EA group demonstrates a rapid decrease of both ΔRR and ΔRTE in the pre-
movement stage localized at bilateral occipito-parietal sensors (ΔRR: −360–550 ms, ΔRTE: −360–740 ms, fcrit =
4.07, pcrit = 0.05). While the complexity of EEG signals of YA group is preserved on the baseline level, EA group is
characterized by the decrease of EEG complexity associated with both stimuli presentation and motor preparation
stage. In our earlier work, the decrease of EEG complexity was linked to event-related desynchronization (ERD)
of mu-rhythm during motor execution [19]. We believe that the demonstrated effect in the EA group is of similar
origin, reflecting the peak of theta-power associated with stimuli presentation and motor planning. Note that,
although this effect can be visually inspected on the averaged spectral power time series, RQA measure were
sensitive enought to detect it via statistical analysis.
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Fig. 2 Results of between-groups spatio-temporal cluster test of RQA measures time series: a ΔRTE and b ΔRR. Gray
areas on the plots highlight the time interval where the significant differences between groups were found. The lineplots are
presented as mean ± SE
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3.3 Brain functional connectivity

Connectivity matrices were calculated for each subject in the identified theta (5–8 Hz) rhythm. Between-subject
analysis identified two groups of statistically relevant connectivity topologies corresponding to subnetworks with
significantly stronger coupling in the YA group and EA group. Figure 3 shows the obtained topologies for the
motor planning stage (0.0–0.5 s).

The EA group demonstrates more connections in the right parietal area (sensors P4, P6, P8) and the left
occipital-parietal area (PO9, PO7, PO3). Sensor C4 was also identified as a hub associated with the left motor
area (FC5 and CP5) and the left frontal cortex. At the same time, we show an age-related decrease in the strength
of connections between the motor area (sensors CP3, C1, FC5, Cz) and the frontal cortex (Fz, F1, F5) with a shift
to the left.

4 Discussion and conclusion

We report the results of the EEG study of age-related changes in the sensorimotor system. The EEG dataset
under investigation was recorded in VR-based experimental environment during target stimuli detection tasks by
different age groups of subjects. To reveal the effect of aging on the neural processing of repetitive sensorimotor task
performance, we applied conventional time-frequency analysis, recurrence quantification analysis and functional
connectivity analysis to study the effects from different perspectives and to form a more comprehensive picture of
how healthy aging alters the neural mechanisms underlying the processing of these experimental conditions.

At the first stage, we demonstrated a significant spatio-temporal cluster of between-groups differences in theta
spectral power involving 41 EEG sensors and emerging during motor execution. Elderly group of subjects, unlike
the young adult group, demonstrate theta ERD associated with a reaction on stimuli (pressing the button).
Although motor processing is conventionally associated with mu- (8–13 Hz) and beta-ERD (15–25 Hz), there is
evidence that with advanced age, the brain activity usually associated with alpha-oscillations can tent to slow
down towards the theta-band [20–22]. It is possible that the observed cluster is associated with motor action
processing, with theta-ERD “inherited” from mu-ERD.

Note that a peak of theta rhythm is noticeable in both groups of subjects after the presentation of the stimulus,
more pronounced in the group of elderly subjects (Fig. 1). Despite the fact that this effect was not significant, we
note that a surge in theta activity in the elderly group as a response to the stimulus was observed earlier [9], where
a similar process was associated with Bland’s model of sensorimotor integration. In their early work on rodents
[23], Bland et al. considered theta activity of the hippocampal formation as a channel of communication between
sensory processing and motor initiation. Synchronization of theta rhythm during the motor planning phase in
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elderly subjects has been repeatedly observed in other studies [24]. This effect was previously tied to the retrieval
of information from working memory associated with the performance of sequential motor tasks [25]. In the study
[26], the theta power was positively associated with motor learning.

We proceeded with windowed RQA to explore how aging changes the complexity of EEG in theta-band. We
showed a significant decrease in theta-band EEG complexity in EA, but not in YA group, during the motor
preparation stage, most likely associated with the peak of theta-power shown before. As we stated previously,
theta-power increase can be associated with the working memory load. Theta rhythm, particularly in parietal,
temporal and occipital cortex, is known to be involved in the establishment of associations between different
sources of information [27]. In the study [28], a conseptually similar experimental paradigm based on switching
auditory-visual stimulation shown to cause bursts in occipital theta oscillations.

The age-related changes in EEG complexity are a rather rarely covered area of research. There’s a well-established
“decrease of complexity” theory that states that aging causes the loss of complexity in all physiological aspects [29],
including the brain activity [30, 31]. EEG complexity is a good indicator of pathological processes and can be used
as a biomarker of Autism Spectrum Disorder [32, 33] and various mental disorders [34, 35]. RQA-based complexity
measure correlate with conventional biomarkers of aging, such as spectral properties of task-related EEG [36]. In
general, we believe that the demonstrated effect is associated with the burst of theta-rhythm preceeding motor
reaction on the target stimuli, which links this biomarker to the increased working memory load. The observation
of this pattern in EA group, but not in YA, can be linked to the more challenging access to the working memory
in the elderly popullation, as it was demonstrated previously in [9].

The results were reinforced by the analysis of functional connectivity network topology on the motor preparation
time interval. Network-based statistic revealed the fronto-parietal and occipital connections in the theta rhythm
that most likely indicate the formation of an attention network in the EA group, the activation of which is
associated with attention control [37]. In addition, a relationship was indicated between theta rhythm power, the
fronto-parietal network, and access to working memory and cognitive abilities [38]. Note that the CPz sensor is a
strong node in the EA group, having connections with temporal, parietal and occipital regions. Previous studies of
age-related changes in neural responses to movement execution reported a similar result in the theta rhythm, which
was interpreted as a sign of age-related decline in working memory [39]. These results may indicate a compensatory
increase in the number and strength of connections in the group of elderly subjects. The compensatory mechanism
is a reorganization mechanism that prevents cognitive decline by recruiting additional areas to process tasks that
require fewer resources in the control group. The structure of the functional network shown in Fig. 3 can be
explained by the age-related requirement for additional neural resources, which forms a much more extensive
structure of the functional brain network for processing motor tasks in the group of elderly subjects.

In conclusion, we show age-related differences in neural activity during the sensorimotor integration tasks per-
formance using time-frequency, functional connectivity and recurrence quantification analysis of EEG signals. We
demonstrate the emergence of age-related compensation mechanisms of neural resources for the performance of
simple sensorimotor tasks. The involvement of neural connections by elderly people indicating high involvement
of the attention control network and difficult access to working memory were demonstrated. It was shown that
RQA measures are capable of detecting biomarkers of healthy aging, such as a burst of theta-rhythm complexity
during the motor planning stage.
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