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Abstract—We investigate the capability of reservoir computing
to predict the dynamics of excitable FitzHugh-Nagumo model,
exposed to Gaussian white noise, and reproduce the phenomenon
of coherence resonance in the reservoir. We train the neural
network on the dynamics of the system with three noise am-
plitudes and then test in on different noises. We show that
the reservoir computing can exhibit coherence resonance under
external stimulus.

Index Terms—Reservoir computing, prediction, FitzHugh-
Nagumo model, noise, coherence resonance

I. INTRODUCTION

Nowadays, artificial neural networks are widely used to
study mathematical models of biological neurons [1]-[3],
know for their nonlinear nature. In particular, they were used to
predict the occurrence of spikes in the Hodgkin-Huxley model
[4], as well as spike features [5] and the dynamic behavior of
the neuron model [6]. Also artificial neural networks were used
to accurately predict parameters of FitzHugh-Nagumo model
[7].

A convenient tool for learning nonlinear dynamical systems
is a reservoir computer, a type of artificial recurrent neural
network, that has been successfully used to predict chaotic
time series [8], [9]. There was a number of works applying
reservoir computers for studying mathematical neuron mod-
els, including chaotic and periodic time series prediction of
Hindmarsh-Rose model [10]-[12] and prediction of extreme
events in a system of coupled FitzHugh-Nagumo neurons [13],
[14].

A phenomenon called “coherence resonance” is observed
in excitable dynamical systems driven by external noise,
corresponding to existence of noise intensity which causes
highest degree of coherence of noise-induced oscillations
[15]. Coherence resonance is observed in mathematical mod-
els of biological neurons, inlcuding FitzHugh-Nagumo [16],
Hodgkin-Huxley [17] and Hindmarsh-Rose [18] models, and
cortical networks [19]-[21].

In this study we investigate the possibility of exhibition
of coherence resonance in a reservoir computer, as reservoir
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computer’s hidden layer itself is an excitable system, by
training a type of reservoir computer called “echo state net-
work” on FitzHugh-Nagumo model time series with different
levels of white noise intensity. We show that predictions
of a manually optimized reservoir computer display varying
degrees of coherence under varying noise amplitudes, sharing
these features with the original FitzHugh-Nagumo time series.

II. METHODS
A. FitzHugh-Nagumo model

As a model neuron we use the FitzHugh-Nagumo model
describes by the following system of differential equations:

3

ex =x — 3 Y
with e = 0.001 and a = 1.05 are the constant parameters, &|t]
is a zero-mean Gaussian noise with standard deviation equal
to 100, and D is a parameter that controls the intensity of the
noise.

For solving the differential equations we use the Euler
method with time step Aty = 0.0001. The time step was
further increased up to At = 0.001 by saving only every tenth
data point, the other points were discarded.

For RC training we use the time series of duration 7' = 240.
This time series was divided into three parts:

o 17 = 0-80, with D = 0.008;

o T5 = 80-160, with D = 0.064;

o T3 =160-240, with D = 0.512.

Training data also contained corresponding Gaussian noise
D¢|[t], however, the noise values weren’t predicted by the RC.
Thus, the reservoir computer was trained to distinguish signals
with three different levels of noise amplitude.

All data for training and testing were normalized using z-
score normalization.

y=x+a+ DE[t, (1)

B. Reservoir computing architecture

We use a type of reservoir computer known as an echo state
network (ESN). It uses a hidden layer (called a reservoir) with
sparse recurrent connections between neurons.
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The reservoir dynamics are described by the following
formula:

hlt + 1] = tanh(W}, x h[t] + Win X ult]) )

, where hlt] is the reservoir state vector containing all acti-
vations of reservoir neurons at time ¢, W}, is an adjacency
matrix containing connection weights values between neurons
of the hidden layer, W;,, is a matrix carrying input neurons’
connection weights, u[t] is a three-dimensional input signal.
Output data at a given time step is evaluated as follows:

ylt + 1] = Wouhlt] 3)

, where W,,,; is an output weights matrix, fz[t] is the reservoir
state vector with half of its values squared.

Wi, matrix values are randomly chosen from the interval
[—1,1] with uniform distribution. W;, is formed in such a
way that each input dimension is connected to % reservoir
nodes, where N is the total number of individual neurons in
reservoir fixed to a constant value of 1002.

During W}, initialization, its values are chosen from the
uniformly distributed interval [0,1]. The sparsity of W), is
calculated as %, where d is a hyperparameter. Spectral radius
po of Wy, is then rescaled to a set value of p.

Connections between reservoir neurons and output neurons,
stored in W, are the only trainable connections of the RC.

Tikhonov regularization is used to find the values of W,,;.

ITI. RESULTS

We manually explored the hyperparameters’ space by trial
and error, changing values of p, d and regularization parameter
a. The RC’s prediction performance was determined by its
dynamics similarity with the original three testing signals.
Those signals included FHN time series with 7' = 200 and
D = 0.008,0.064,0.512 respectively. The prediction results
are shown on Fig. 1, Fig. 2 and Fig. 3.
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Fig. 1. Results of FitzHugh-Nagumo time series prediction with D = 0.008.

The results of prediction of the signal with D = 0.008
are shown on Figure 1. The RC has partially succeeded
in reproducing the original signal’s dynamics. The predicted
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Fig. 2. Results of FitzHugh-Nagumo time series prediction with D = 0.064.
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Fig. 3. Results of FitzHugh-Nagumo time series prediction with D = 0.512.

signal is more coherent, but the rare spike generation and
variable interspike intervals, both features of the original
signal, are still present.

Figure 2 shows the prediction results of the signal with
D = 0.064. The reservoir computer’s output signal dynamics
are similar to the original model. However, the predicted oscil-
lations are almost periodic, they are more coherent compared
to the oscillations of the original signal.

The prediction results of the signal with high noise ampli-
tude (D = 0.512) are presented on Figure 3. The predicted
signal’s spikes are frequent and intervals between the spikes
are variable, these features are found in the original signal.
However, the original signal is more noisy and its interspike
intervals are even more variable.

IV. CONCLUSIONS

We trained a reservoir computer to replicate the dynamics
of excitable FitzHugh-Nagumo model’s signals with different
levels of noise amplitude. Spike frequencies and interspike
interval variations of RC’s predicted signals are similar to cor-
responding original model signals, though the predicted signals
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are not exact replications of the original ones. Varying spike
coherence of these predictions shows that reservoir computer
exhibits the phenomenon of coherence resonance. Further
reserch is needed in order to improve RC’s performance in
forecasting noisy FitzHugh-Nagumo model’s signals.
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