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In this study, we suggest that detrended fluctuation analysis may reveal alternations in long-range temporal
correlations associated with epileptic status. We consider two groups of subjects: patients with confirmed focal
epilepsy, and healthy controls. Both groups were exposed to intermittent photic stimulation. Analysis based on
event-related spectral perturbations revealed that photic driving in epileptic patients is higher in the α band and
lower in other bands. This result is related to altered excitability in nonphotosensitive epilepsy. To prove this, we
tested two hypotheses. First, we assess long-range temporal correlations using detrended fluctuation analysis,
with the objective of evaluating whether this metric differs between epileptic patients and healthy controls
through the application of between-subject statistics. Second, we investigate whether detrended fluctuation
analysis provides more valuable insights into the aforementioned differences in comparison to traditional spectral
analysis of brain signals. More precisely, we test if a machine learning algorithm trained on detrended fluctuation
analysis-based features outperforms one trained on the spectral-based features in classifying between epileptic
patients and controls. Furthermore, we study whether the features differ between classifiers by implementing
feature importance assessment. Our findings demonstrate that the classifier based on detrended fluctuation
analysis exhibits higher efficiency, and its features are notably distinct from those of the classifier based on
spectral analysis. We postulate that the long-range temporal correlations captured via detrended fluctuation
analysis reveal novel aspects of the epileptic brain response to intermittent photic stimulation, and they are
more pronounced than the features captured via spectral analysis.
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I. INTRODUCTION

A. Problem overview

The spontaneous neural oscillations of the brain are known
for pronounced variability in amplitude, duration, frequency,
and recurrence. The major unresolved question is whether
fluctuations in these oscillations reflect a memory of the dy-
namics of the system for more than a few seconds [1]. This
leads to a great interest in studying long-term spatiotemporal
patterns in the brain, which can be expressed through long-
range temporal correlations (LRTCs) [2].

A common way to analyze scaling behavior in time series
and quantify LRTC is detrended fluctuation analysis (DFA),
which incorporates less strict assumptions about the stationar-
ity of the signal than the autocorrelation function [3]. DFA can
capture features of brain activity distinct from those revealed
by traditional spectral analysis [4], which offers a unique
perspective on neural oscillations research.
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The salient features of DFA become particularly significant
in the investigation of certain complex and poorly defined
brain states. A prime example of this is the brain response to
intermittent photic stimulation (IPS) [5], a widely employed
technique in the clinical diagnosis of epilepsy [6]. The diag-
nosis is based on the response specific to the epileptic brain.

It is assumed that epileptic status is tied to increased cor-
tex excitability due to the loss of inhibitory control [7]. At
the same time, the dominant hypothesis of LRTC in neural
oscillations suggests that excitatory-inhibitory balance plays
a crucial role, and its disruption may lead to dysfunction [8].
In this context, DFA may reflect epilepsy-related changes in
LRTC and provide new insights into differences in neural
activations during IPS between epileptic patients and healthy
controls.

B. Long-range temporal correlations
and detrended fluctuation analysis

In recent years, LRTC was extensively used in analysis
of neuronal signals [9–11], however there are certain funda-
mental issues waiting to be addressed. Findings prove that the
brain operates on a wide range of timescales, varying from
milliseconds in stimulus perception to tens of seconds during
extensive cognitive load [12]. This leads to the suggestion that
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neural activity in the brain can exhibit scale-free dynamics,
i.e., dynamics without characteristic scales [13]. More im-
portantly, this type of dynamics turned out to be crucial for
physiological functions of the brain in both normal and patho-
logical states [14–16]. However, neuronal dynamics are rarely
studied with approaches incorporating different timescales in
order to better understand integrative brain mechanisms [4].
In this sense, LRTC provides a unique opportunity to study
how neuronal activity unfolds in time with respect to different
timescales.

LRTCs were first discovered in electroencephalogram
(EEG) and magnetoencephalogram (MEG) signals during pe-
riods of eyes-closed and eyes-open rest [2]. These initial
findings, demonstrating LRTC in α and β oscillations within
timescales of 5–300 s, were subsequently confirmed in shorter
experiments and a more restricted range of 1–25 s [9,17,18].
LRTCs have also been observed in θ and δ frequency bands
[18,19], although they are less commonly found in higher
frequencies [20]. Certain studies indicate that LRTCs are
influenced by low-level biological factors, such as genetics,
rather than random experimental variables [17]. This finding
contributes to the test-retest reliability of DFA. Furthermore,
DFA exponents have been shown to be independent of the
power of neuronal oscillations in both scalp [17,18] and sub-
dural EEG [19], further reinforcing the robustness of this
analytical approach.

C. Intermittent photic stimulation and photic driving

Diagnostics with IPS relies heavily on the detection of an
abnormal EEG trait known as the photoparoxysmal response
(PPR) [21]. However, PPR is observed exclusively in pho-
tosensitive epilepsy, which accounts for only 2–5% of all
epilepsy cases, potentially limiting the diagnostic utility of
IPS [22]. Another type of response to IPS is photic driving
(PD), characterized by steady-state visual evoked potentials
(SSVEPs) at the frequency and/or harmonics of the IPS. Find-
ings indicate that PD might differentiate between controls and
individuals with neurological disorders, including epilepsy
[23–25]. PD is commonly investigated using spectral analysis
techniques, such as the continuous wavelet transform (CWT)
[26]. Various scoring characteristics have been introduced
to evaluate the manifestation of PD and identify differences
between patients and controls [26,27], however there is no
consensus regarding the diagnostic utility of PD. As a result,
the efficacy of IPS for diagnosing nonphotosensitive epilepsy
remains a topic of ongoing debate.

D. Machine learning and domain knowledge

ML is frequently associated with classification tasks, and
a burgeoning trend is the integration of ML with domain
knowledge [28,29]. The underlying principle is that ML has
the potential to detect subtle data properties that often elude
human observation and conventional data analysis methods,
while domain knowledge, often derived from statistical test-
ing, provides fundamental insights into data features that have
been thoroughly investigated through scientifically rigorous
research but may be underrepresented in a specific dataset.
Combining these two approaches offers clear advantages. For

example, integrating the results of traditional statistical tests
with significant features from the ML-based classifier can
ensure a more robust identification of biomarkers in EEG
[30,31]. While many ML-based classifiers operate as “black
boxes” with difficult-to-interpret features, there is increasing
interest in assessing feature importance, which can poten-
tially enhance the interpretability of such classifiers [32,33].
Increasing the interpretability of machine learning methods
and utilizing explainable AI (XAI) techniques is particularly
relevant in biomedical tasks [34–36].

E. Contribution of the study

This study contributes by testing two hypotheses. First,
we assess LRTC using DFA and evaluate whether this metric
differs between epileptic patients and healthy controls using
between-subject statistics. Second, we investigate whether
DFA provides more valuable insights into the aforementioned
differences compared to traditional spectral analysis of brain
signals. More precisely, we test if the machine learning al-
gorithm trained on the DFA-based features outperforms the
algorithm trained on the spectral-based features in classifying
between epileptic patients and controls. Additionally, we test
whether DFA-based features differ from spectral-based fea-
tures by implementing feature importance assessment.

The structure of the study is presented in Fig. 1. First, we
consider a clinical dataset consisting of raw EEG signals from
control subjects and patients with focal epilepsy. We perform
basic preprocessing, including band-pass and notch filtering,
as well as artifact removal based on independent component
analysis. Detailed information regarding this step is provided
in Sec. II B.

Second, data are processed using two distinct approaches:
CWT and DFA. This processing is performed for each IPS
frequency across five frequency ranges and 25 EEG channels.
This step yields two characteristics: wavelet power (w) and
DFA scaling factor (μ). Detailed descriptions of these meth-
ods are found in Secs. II C and II D, respectively.

Third, cluster analysis is implemented to identify spatial
clusters specific to IPS frequency and frequency range, where
w or μ exhibit significant differences between control sub-
jects and patients. Details regarding this step are provided in
Sec. II E.

Fourth, the ML approach is applied: two classifiers are
trained using the w and μ characteristics, respectively, em-
ploying the support vector machine (SVM) method. Each
classifier is constructed in two variations: (i) with all features
(9 IPS frequencies ×5 frequency ranges ×25 EEG channels)
reduced using principal component analysis, and (ii) with
features derived from significant clusters. Complete details
are presented in Sec. II F. Our findings demonstrate that the
efficiency of the DFA-based classifier surpasses that of the
CWT-based classifier in both variations.

Fifth, feature importance for classification using both
CWT and DFA-based features is assessed with the Boruta
method described in Sec. II G. We observe notable differ-
ences between features that are significant to both approaches.
Specifically, DFA analysis revealed no discernible “resonant”
brain response at very low IPS frequencies. However, at
higher IPS frequencies, the brain response shifted from the
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FIG. 1. Structure of the study. Block 1: Clinical dataset with raw EEG signals of controls and patients with focal epilepsy is preprocessed.
Subplots here show examples of raw EEG data as well as preprocessing pipeline. Block 2: For data processing, we consider two different
approaches: continuous wavelet transform (CWT) and detrended fluctuation analysis (DFA). Corresponding subplots schematically show the
results of processing with each method. Block 3: Clustering analysis is used to find spatial clusters with significant difference between controls
and patients. Two subplots demonstrate examples of such clusters. Block 4: Results of CWT and DFA are used to train machine learning
classifiers with the support vector machine (SVM) method. The subplot here schematically shows the basic principle of SVM. Classifiers are
trained in two variants: (i) with all features reduced with principal component analysis, and (ii) with features from significant clusters. Two
tables here contain efficiency metrics for both variants of each classifier. Block 5: Feature importance is assessed via the Boruta method to
highlight differences between features of CWT and DFA. The subplot here has an example of feature importance ranking.

frontal and temporal areas, as observed in CWT clusters, to
parietal and occipital regions. Combining this result with the
superior performance of the DFA-based classifier, we posit
that LRTCs, assessed through DFA, may reveal novel aspects
of brain response to IPS in nonphotosensitive epilepsy.

II. MATERIALS AND METHODS

A. Experimental design

The data for this study were collected at the Pirogov Na-
tional Medical and Surgical Center (Moscow, Russia). Dataset
includes anonymized EEG data of 54 patients of the Center

from 2017 to 2019, and 54 controls recruited from the staff of
the Center. Medical procedures were preapproved by the local
ethics committee and carried out at the Center following the
Helsinki Declaration and medical regulations of the Center.
All subjects provided written informed consent before the
procedure. For the patients, the sessions of IPS were part
of a long-term clinical monitoring aimed at clarifying the
diagnosis and specifying the epileptogenic zones. All patients
were diagnosed with focal epilepsy, yet the foci were located
in different regions (frontal, temporal, parietal) of both hemi-
spheres. Thus, there was no uniformity in the focus placement
among the patients. It should be emphasized that the epilepsy
was drug-resistant in all patients, so none of the patients were
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FIG. 2. Experimental setup. Participant sits upright with eyes closed. Intermittent photic stimulation is performed via a lamp with circular
reflector. The subplot here illustrates stimulation protocol: 9 frequencies in total with 30-s baseline, stimulation on individual frequencies
lasts for 8 s, sessions are separated by 5-s rest. EEG data are collected by a recording device with 25 channels of electrical activity. EEG
channel names and locations are shown in the upper left panel. The lower left panel shows the spectra of the typical responses to photic
stimulation—photic driving recorded in the occipital cortex (channel O1) at the stimulation frequencies of 10 and 15 Hz.

taking antiepileptic drugs at the time of clinical monitoring.
While IPS was employed along hyperventilation to provoke
epileptiform activity [37], there was no PPR, so all patients
were considered nonphotosensitive. Some patients had more
than one session of IPS, but to equalize all subjects we con-
sidered only the first session. For the controls, a single session
of IPS was recorded under conditions close to clinical.

The experimental setup is shown in Fig. 2. IPS was con-
ducted in a dimly lit room with the participant seated upright
and eyes closed. Stimulation was delivered using a lamp
equipped with a circular reflector, emitting flashes with an
intensity of approximately 0.70 J at a viewing distance of
approximately 30 cm. The protocol included stimulation at
nine frequencies: fIPS = 1, 3, 8, 10, 15, 18, 20, 25, and 30 Hz.
Each stimulation instance lasted for Tf = 8 s, followed by a
5-s pause separating stimulation at different frequencies. Prior
to IPS, at least 30 s of resting state EEG data were recorded
and subsequently used as baseline activity.

B. Data acquisition and preprocessing

“Micromed” encephalograph (Micromed S.p.A., Italy) was
used to record EEG signals at a sampling rate of 128 Hz
from C = 25 EEG channels according to the international
“10–20” scheme [38]. A ground electrode was placed on the
forehead, and reference electrodes were placed at the ears.
Raw EEG is known to be highly susceptible to noise and phys-
iological artifacts, which is especially noticeable in prolonged
clinical studies [39]. Certain parasitic components such as

respiration or muscle artifacts have inherent low or high
frequency. Therefore, we implemented a band-pass filter (But-
terworth 1–60 Hz) to suppress them. An additional 50-Hz
notch filter was used to mitigate interference from the power
grid. Some other components such as artifacts from blinking
and cardiac activity interfere with the common frequency
range of EEG (1–40 Hz). To remove such interferences, we
used an advanced procedure based on independent component
analysis (ICA) [40].

All preprocessing was conducted in MATLAB software us-
ing the Fieldtrip toolbox [41].

C. Time-frequency analysis

The spectral power of the EEG was analyzed using contin-
uous wavelet transform (CWT) [42]. The wavelet power (WP)
spectrum

Ei( f , t ) = [W i( f , t )]2 (1)

was calculated for each ith EEG channel, Xi(t ), over the fre-
quency range f ∈ [1, 40] Hz, which included all frequency
ranges of interest for analysis. The complex-valued wavelet
coefficients, W c( f , t ), were calculated as follows:

W i( f , t ) =
√

f
∫ t+4 f

t−4/ f
Xi(t )ϕ∗( f , t )dt, (2)

where i = 1, . . . ,C represents the EEG channel number, and
the “*” symbol denotes a complex conjugate. The Mor-
let wavelet was employed as the mother wavelet function,
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ϕ( f , t ), which is defined as follows:

ϕ( f , t ) =
√

f π1/4e f ω0 f (t−t0 )e f (t−t0 )2/2, (3)

where ω0 = 2π represents the central frequency. As indicated
in Ref. [43], the Morlet wavelet is advantageous for analyzing
EEG recordings that contain a range of rhythms and oscilla-
tory patterns. A comparison of EEG analysis studies utilizing
different mother wavelets [42] reveals that the Morlet wavelet
offers a discernible wavelet spectrum and superior overall
resolution in the frequency-time domain.

CWT analysis was conducted in MATLAB software using
the Fieldtrip toolbox [41].

Intervals of 0.5 s were allocated on each side of the trial
to account for boundary effects tied to WP calculation. To
isolate the WP associated with the effect of IPS, we com-
puted the event-related spectral perturbations (ERSPs) with
baseline correction to the background brain activity prior to
the IPS session. The ERSP was calculated by subtracting the
baseline from the stimulus and dividing the result by the base-
line: ERSP = (Stimulus−Baseline)/Baseline. Subsequently,
the ERSPs obtained for each EEG channel were averaged over
time,

wi( f ) =
∫ t0+Tf

t0

Ei( f , t ) dt, (4)

where t0 is the stimulation start time, and Tf = 8 s is the
duration of the stimulation. Typical examples of the ERSP
[wO1(t )] recorded during IPS at frequencies of 10 and 15 Hz
in the occipital cortex (O1 EEG channel) within the frequency
range of 1–30 Hz are presented in the bottom left subplot of
Fig. 2. In the former case, both the stimulus frequency and its
second harmonic (highlighted in blue) are clearly discernible,
whereas in the latter case, only the stimulus frequency (also
highlighted in blue) is evident.

Then, we introduced 13 frequency ranges [ f1, f2] under
study, in which we considered the average WP:

wi
	 f = 1

f2 − f1

∫ f2

f1

wi( f ) df . (5)

First, we considered standardly introduced four frequency
bands on the EEG: δ, θ, α, and β. Second, we considered
nine frequency ranges associated with stimulation frequencies
fIPS, namely we introduced [ fIPS − 0.5, fIPS + 0.5] Hz for
fIPS = 1 Hz, and [ fIPS − 1, fIPS + 1] Hz for all fIPS higher
than 1 Hz. For more details, see Table I.

When addressing processes at a specific stimulation fre-
quency fIPS, we considered 25×5 values of wi

	 f , which
correspond to 25 EEG channels (i = 1, . . . , 25) and five fre-
quency ranges: four standard frequency bands wi

δ, wi
θ , wi

α ,
and wi

β , as well as a frequency band corresponding to the
specific stimulation frequency wi

	 fIPS
.

D. Detrended fluctuation analysis

Detrended fluctuation analysis is a powerful tool for an-
alyzing complex time series, particularly when the objective
is to understand the structure of the data across different
timescales and identify hidden correlations and trends [44].

TABLE I. The size of the windows in which the filter’s influence
is negligible for each frequency range under study.

Frequency range Fitting time window (s)

[1, 4] Hz (δ-range) 2.8–7.6
[4, 7] Hz (θ -range) 0.9–2.8
[8, 12] Hz (α-range) 0.2–5.7
[13, 30] Hz (β-range) 0.07–4.2
[0.5, 1.5] Hz ( fIPS = 1 Hz) 4.6–5.1
[2, 4] Hz ( fIPS = 3 Hz) 1.3–7.6
[7, 9] Hz ( fIPS = 8 Hz) 0.2–7.6
[9, 11] Hz ( fIPS = 10 Hz) 0.1–6.9
[14, 16] Hz ( fIPS = 15 Hz) 0.09–6.9
[17, 19] Hz ( fIPS = 18 Hz) 0.07–7.6
[19, 21] Hz ( fIPS = 20 Hz) 0.07–4.6
[24, 26] Hz ( fIPS = 25 Hz) 0.07–2.1
[29, 31] Hz ( fIPS = 30 Hz) 0.07–1.2

The outcome of DFA is a scaling factor (μ) that charac-
terizes the type of correlations present within the data [3].
For instance, μ = 0.5 indicates the absence of correlations,
which is consistent with a random wandering process or white
noise; μ < 0.5 indicates an anticorrelated process; μ > 0.5
indicates the presence of long-term correlations, which may
be indicative of a stable trend.

As in the case of CWT analysis (see Sec. II C), we
considered 13 frequency ranges [ f1, f2] under study, which
correspond to both the 4 standard frequency ranges (δ, θ, α,
and β) and the 9 frequency ranges associated with stimu-
lation frequencies fIPS. For each stimulation frequency fIPS,
DFA was calculated for each ith EEG channel (i = 1, . . . ,C)
in each standard frequency range and stimulation frequency
range to obtain the 5 scaling factors μi

δ, μi
θ , μi

α, μi
β , and

μi
fIPS

, respectively.
The DFA-based analysis of each ith EEG channel signal

Xi(t ) is comprised of the following steps:
(i) Filtering the signal Xi(t ) in the frequency range [ f1, f2].

We used a finite impulse response (FIR) filter whose order
was set to 2/ f1 s, where f1 is the lower frequency of the
analyzed frequency range. Thus, we can guarantee that the
filter window covers at least two cycles of oscillations with
frequency f1 Hz.

(ii) Calculating the amplitude envelope using the Hilbert
transform. A Hilbert transform X̂i(t ) is performed on the fil-
tered signal Xi,	 f (t ) to produce a phase-shifted signal [45]:

X̂i(t ) = 1

π

∫ ∞

−∞

Xi,	 f (τ )

t − τ
dτ. (6)

Then the analytic signal Zi(t ) is obtained as the sum of the
original signal and its Hilbert transform: Zi(t ) = Xi,	 f (t ) +
jX̂i(t ), where j is an imaginary unit. The envelope amplitude
is defined as the modulus of the analytic signal:

Ai(t ) = |Zi(t )| =
√

Xi,	 f (t )2 + X̂i(t )2. (7)

(iii) Constructing cumulative series. A cumulative se-
ries, designated as Yi(k), is constructed using the envelope
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amplitude Ai(t ) of length N :

Yi(k) =
k∑

t=1

[Ai(t ) − Āi], (8)

where Āi = 1
N

∑N
t=1 Ai(t ).

(iv) Dividing the dataset into discrete segments. The cumu-
lative series is partitioned into Ns = N/s segments of length s,
with an overlap of 50%.

(v) Removing the trend observed in each segment. A poly-
nomial regression is performed at each segment of length s.
The resulting trend, Y s

i (k), is then subtracted from the cumu-
lative series, thereby obtaining “decorrelated” fluctuations:

F 2
i (s, v) = 1

s

s∑
k=1

{
Yi[(v − 1)s + k] − Y s

i (k)
}2

, (9)

where v = 1, 2, . . . , Ns is the index of the segment.
(vi) Calculating RMS fluctuation. The root-mean-square

(RMS) fluctuation is calculated for each and every segment:

Fi(s) =
√√√√ 1

Ns

Ns∑
v=1

F 2
i (s, v). (10)

(vii) Repeating for different scales. Steps (iii)–(v) are re-
peated for different values of s, which correspond to different
scales.

(viii) Constructing the dependence and estimating the scale
factor. The function F (s) is plotted on a logarithmic scale. In
the event that the time series exhibits a self-similar structure,
the aforementioned dependence will manifest as a straight
line:

Fi(s) ∼ sμi
	 f . (11)

The degree exponent μi
	 f (scale factor) is estimated by calcu-

lating the slope of the line on a logarithmic scale.
It should be noted that filtering introduces a correlation

between neighboring samples of a signal, for example through
convolution in the case of a FIR filter. Consequently, the in-
clusion of exceedingly narrow window sizes within the fitting
range of the fluctuation function may result in the overesti-
mation of temporal correlations [4]. The impact of a specific
filter on the DFA scaling factor can be approximated through
the use of white noise signals, which are expected to yield a μ

value of 0.5. The algorithm is the following:
(1) One thousand white noise signals are generated.
(2) The requisite FIR filter is then applied to each signal.
(3) Subsequently, the amplitude envelopes of the filtered

signals are extracted.
(4) A DFA is conducted for each signal, with all fluctuation

functions subsequently averaged.
(5) The time windows for which the fluctuation function is

approximately equal to 0.5 are estimated.
Table I specifies the extent of the window for each fre-

quency range in which the filter influence is deemed to be
insignificant.

The DFA scaling factor was calculated using the Neuro-
physiological Biomarker Toolbox software (NBT) [46].

E. Statistical testing

A statistical analysis of brain cortical activity in the spatial
and frequency domains was conducted at the subject level
for both time-averaged ERSPs (wi

	 f ) and the scaling factors
(μi

	 f ) calculated for each ith EEG channel and five frequency
ranges depending on the frequency of stimulation fIPS. The
statistical significance of the contrasts between conditions
(control group and patients with diagnosed epilepsy) was
evaluated using the permutation test with cluster-corrected
multiple comparisons [47].

A statistic (t-statistic for independent samples) was calcu-
lated for each data point for the studied dataset. Subsequently,
the sample elements were repeatedly shuffled between the
conditions in order to create a set of potential data distribu-
tions that were consistent with the null hypothesis. Thereafter,
the t-statistic was recalculated for each permutation. At each
stage of the process, both the original dataset and each gen-
erated permutation were examined to identify clusters of
adjacent points where the test statistic exceeded a specified
significance threshold. For each cluster, the cluster statistic
was calculated as the sum of the t-statistic values within the
cluster. The value of the maximum statistic was then stored in
order to construct an empirical distribution. The significance
of clusters in the real data was determined by comparing the
cluster statistic to the empirical distribution of the maximum
cluster statistic derived from permutations. This allows us to
ascertain the probability of observing such a cluster when
the null hypothesis is true. Consequently, the issue of mul-
tiple comparisons was addressed by regulating the probability
of false positive clusters, rather than that of individual data
points. This method effectively reduces the number of false
positives that result from multiple comparisons, it does not
require the assumption of data normality, and it accounts
for the spatial dependence between data points, which is of
particular importance when analyzing EEG recordings.

Data points with p < 0.01 were grouped into separate
positive and negative clusters. The minimum number of
neighboring data points required to form a cluster was one.
Such a minimal cluster size combined with a higher sig-
nificance level threshold (p < 0.01) was chosen to ensure
that statistical testing remained sensitive to local differences
between groups [48]. A relatively small number of EEG chan-
nels (only 25) was used in our study. With a larger number
of channels, neighboring points are more likely to have cor-
related signals, facilitating the formation of clusters. With
fewer channels, the spatial density of the data is lower, which
may result in significant effects localized in individual sensors
not being included in the formed clusters. Using a minimum
cluster size of one helps to overcome this limitation. A cluster
was considered significant if its p-value was less than 0.025.
A total of 1000 permutations were performed.

The analysis was conducted using MATLAB software with
the Fieldtrip toolbox [41].

F. ML-based classifiers

Two distinct classifier types were investigated: one em-
ploying ERSP (wi

	 f ) values and another utilizing scaling
factor (μi

	 f ) values. Both classifier types were implemented
in two distinct variants.
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The first variant of each classifier was trained using a
feature set encompassing all wi

	 f or μi
	 f values across 25

EEG channels, 9 IPS frequencies, and 5 frequency bands
(comprising the 4 standard frequency bands and stimulation
frequency range), resulting in a total of 1125 features. To
mitigate the dimensionality of the feature space, principal
component analysis (PCA) was employed [49]. Determining
the optimal number of principal components (PCs) with high
explanatory power in relation to the original data variance
is crucial in PCA. We implemented the following algorithm:
the data were decomposed into several PCs, a threshold of
explained variance was set to 85%, and then the minimum
number of components that can explain a sufficiently high
variance were selected. The resulting number of features was
15 for ERSP w and 46 for DFA scaling factor μ.

The second variant of each classifier was trained using
only features exhibiting statistically significant differences
between conditions, yielding 132 features for the ERSP-based
classifier and 36 features for the DFA-based classifier.

A Support Vector Machine (SVM) classifier with a Linear
Kernel was employed for training. This method has demon-
strated effectiveness in EEG data analysis, including epilepsy
diagnostics [50–53]. Linear SVM aims to identify an optimal
hyperplane that effectively separates two classes in feature
space, maximizing the margin between data points from each
class. This approach enhances the model’s robustness to noise
and improves generalization capacity. A regularization param-
eter, denoted as R, acts as a hyperparameter, balancing the
maximization of the margin and minimization of classifica-
tion error to mitigate overfitting. The GridSearch method was
employed to optimize this hyperparameter. Hyperparameter
optimization aimed to maximize the F1-score [54].

ML model performance was assessed through k-fold cross-
validation. Data from all subjects within the same group
(patients or controls) were partitioned into k = 10 subsets.
The model was trained on k − 1 subsets and evaluated on the
remaining subset. This process was repeated five times.

To evaluate ML model quality, the following metrics were
computed based on the number of true positives (TPs), true
negatives (TNs), false positives (FPs), and false negatives
(FNs):

Accuracy. The proportion of correct answers of an algo-
rithm:

Accuracy = TP+TN

TP+TN+FP+FN
. (12)

Recall. The proportion of correctly found positive objects
among all objects of positive class:

Recall = TP

TP+FN
. (13)

Precision. The proportion of correctly predicted positive
objects among all objects predicted as a positive class:

Precision = TP

TP+FP
. (14)

F1-score. Harmonic mean between recall and accuracy:

F1-score = 2 × Precision×Recall

Precision+Recall
. (15)

G. Explainable ML technique to identify
the features importance

The Boruta method [55] was employed to identify the most
salient features for classification. This method operates by
comparing original features to their corresponding “shadow
features,” which are generated through random shuffling
of the original feature values. Features exhibiting minimal
divergence from their shadow counterparts are deemed in-
consequential for the model’s predictive performance. The
procedure involves the following steps:

(i) Shadow Feature Creation: Random combinations of
original feature values are generated to create new features,
which are appended to the dataset. These newly generated
features are designated as “shadow features.”

(ii) Feature Importance Assessment: The model is trained
on the augmented dataset. For each feature (original and
shadow), an importance value is calculated based on its influ-
ence on predicting the target variable. Feature importance is
quantified by the reduction in classification accuracy resulting
from its exclusion from the model.

(iii) Feature Significance Determination: The relative im-
portance of each original feature is compared against the
maximum importance of its associated shadow features. A
feature is considered significant if its relative importance
demonstrably exceeds that of any corresponding shadow fea-
tures.

(iv) Iterative Feature Elimination: Unimportant features
are systematically eliminated from the training dataset. This
process is repeated iteratively until either a predefined number
of iterations is reached or all features have been assigned an
importance score.

III. RESULTS

A. Results of clustering analysis for ERSP

ERSPs (wi
	 f ) in the IPS frequency band, as well as in the

δ-, θ -, α-, and β-frequency bands, were compared between
healthy controls and patients with diagnosed epilepsy for each
of the 9 IPS frequencies.

We considered statistically significant clusters observed
in all ERSP comparisons across all investigated frequency
bands and IPS frequencies. A comprehensive overview of
these findings is presented in Table II, which lists all statis-
tically significant clusters for all ERSP comparisons. Detailed
illustrations of these clusters are shown in the Supplemental
Material [56]. Figures 6–10 in the Supplemental Mate-
rial show the statistically significant differences found after
statistical analysis of the ERSP between the two experimen-
tal conditions: control group and patients with confirmed
epilepsy. All EEG channels showing statistically significant
differences between experimental conditions were grouped
into positive and negative clusters, and marked with white
circles. In positive clusters, the ERSP values are higher in the
control group.

It is known that in the cluster permutation test, the precise
localization of the effect is difficult—cluster boundaries may
be unreliable due to the fact that a statistically significant
effect is not guaranteed to be present in every data point within
the cluster [57]. Therefore, the results should be interpreted
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TABLE II. EEG channels in which ERSP (wi
	 f ) shows significant differences between conditions: controls and patients. “+” or “−”

denotes positive (controls > patients) or negative (controls < patients) difference. Individual clusters are grouped in parentheses.

IPS frequency (Hz) IPS band δ-band θ -band α-band β-band

1 “+” (T7, F9, T9) “+” (T7, F9) “+” (F8, T8)
3 “+” (F7, F9) “+” (F7, T7, F9, T9),

“+” (Fp2, F10)
“+” (Fp1, Fp2, F8, F9,
T9, F10), “+” (O1, O2)

“−” (P7, T9, P9) “+” (T8, P8)

8 “+” (O1, O2) “+” (F7, F3, F9, T9),
“+” (F8, F10, T10)

“+” (F8, F10) “−” (T10, P10) “+” (T7, T9)

10 “+” (F7, T7, F9) “+” (F8, T8)
15 “+” (T7, F9, T9) “+” (F3, Fz) “−” (Fz, Cz, Pz) “+” (F8, T8)
18 “+” (P7, O1) “+” (Fp1, Fp2, Fz, F4) “−” (Fz, Cz),

“−” (P8, P10)
“+” (F8, T8)

20 “+” (F8, T8, P4, P8, F10,
T10), “+” (T7, F9, P9)

“+” (Fp2, F3, Fz, T7) “−” (Cz, Pz) “+” (F8, T8,
P8, F10)

25 “+” (Fp1, Fp2, F7, Fz,
F8, T7, T8, P3, Pz, P4,
O1, O2, F9, T9, F10, T10)

“+” (F3, Fz) “+” (Fp2, F8, F10) “−” (Cz, Pz) “+” (O1, O2),
“+” (T7, T9),
“+” (FP1, FP2)

30 “+” (T8, Pz, P4, O1, O2,
T10, P10) “+” (F7, T7)

“+” (T1, T9) “−” (P8, T10,
P10)

“+” (O1, O2)

with caution, and it is important to clarify the meaning of
“statistically significant cluster.” In our paper, statistically
significant cluster is defined as a group of neighboring data
point (channel, frequency) pairs for which the cluster statistics
exceeds a given threshold (cluster permutation test shows that
there is a significant effect of the condition). In this case, the
localization of the cluster is defined within the considered
frequency range ( fIPS, δ-, θ -, α-, and β-band) and the brain
region identified during statistical testing.

Let us consider the detailed results separately for each
investigated frequency range.

Comparison of ERSP in the IPS frequency band showed
the following results. At IPS frequency of 1 Hz, the permuta-
tion test revealed one positive cluster with p = 0.002, which
included the left temporal and frontal EEG channels. At an
IPS frequency of 3 Hz, a positive cluster was observed in
the left frontal region with p < 0.001. At an IPS frequency
of 8 Hz, a positive cluster (p= 0.006) was detected in the
occipital brain region. At an IPS frequency of 15 Hz, we
observed a positive cluster with p = 0.002 in the left temporal
and frontal brain regions. At an IPS frequency of 18 Hz,
a positive cluster (p < 0.001) was found, which included
EEG channels of the left parietal and occipital regions. At
an IPS frequency of 20 Hz, the statistical test revealed a
positive cluster with p < 0.001, which included EEG chan-
nels from parietal, temporal, and frontal brain regions. At an
IPS frequency of 25 Hz, an extensive positive cluster was
detected (p < 0.001), which included the majority of EEG
channels. At an IPS frequency of 30 Hz, we found a pos-
itive cluster with p = 0.002 in occipital and temporal brain
regions.

Comparison of ERSP in the δ-band showed the follow-
ing results. At an IPS frequency of 1 Hz, a positive cluster
was detected in the left temporal and frontal brain regions
(p < 0.001). At an IPS frequency of 3 Hz, a positive cluster
(p < 0.001) included EEG channels of the frontal and left
temporal regions. At an IPS frequency of 8 Hz, the permuta-

tion test revealed a positive cluster with p = 0.003 involving
channels of frontal and temporal brain regions in both the
right and left hemispheres. At an IPS frequency of 10 Hz,
we found a positive cluster (p = 0.002) in the left frontal
and temporal brain regions. At an IPS frequency of 15 Hz, a
positive cluster with p < 0.001 included EEG channels in the
frontal brain region. A positive cluster at an IPS frequency of
18 Hz (p = 0.002) also included EEG channels of the frontal
brain region. A positive cluster at an IPS frequency of 20 Hz
with p < 0.001 included EEG channels of both frontal and
left parietal regions. At an IPS frequency of 25 Hz, we found
a positive cluster with p < 0.001 in the frontal brain region.
At an IPS frequency of 30 Hz, a positive cluster (p = 0.002)
was detected in the left temporal brain region.

Comparison of ERSP in the θ -band showed the following
results. At an IPS frequency of 3 Hz, a positive cluster was
identified with p = 0.02, which included EEG channels of
occipital, frontal, and right temporal brain regions. At an IPS
frequency of 8 Hz, we identified a positive cluster (p = 0.02)
in the right frontal brain region. At an IPS frequency of 25 Hz,
a positive cluster (p = 0.04) was detected also in the right
frontal region.

Comparison of ERSP in the α-band showed the following
results. At an IPS frequency of 3 Hz, the permutation test
revealed a negative cluster with p = 0.04 in the left temporal
and parietal brain regions. At an IPS frequency of 8 Hz, a
negative cluster (p = 0.04) was detected in the right temporal
and parietal brain regions. At an IPS frequency of 15 Hz,
we detected a negative cluster with p = 0.01 in the central
brain region. A negative cluster at an IPS frequency of 18 Hz
(p = 0.002) included EEG channels of the right parietal brain
region. At an IPS frequency of 20 Hz, a negative cluster
with p = 0.04 was detected in the central brain region. At
an IPS frequency of 25 Hz, a negative cluster (p = 0.02) was
detected also in the central region. At an IPS frequency of
30 Hz, a negative cluster (p = 0.003) was detected in the right
temporal and parietal brain regions.
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TABLE III. EEG channels in which scaling factor (μi
	 f ) shows significant differences between conditions: controls and patients. “+” or

“−” denotes positive (controls > patients) or negative (controls < patients) difference. Individual clusters are grouped in parentheses.

IPS frequency (Hz) IPS band δ-band θ -band α-band β-band

1 “−” (O1, O2, P10) “+” (P7)
3 “−” (T10)
8 “−” (C4) “−” (P10) “−” (C4)
10 “−” (C4, T8) “−” (Pz)
15 “−” (C4, P4) “−” (Cz) “+” (O1)
18 “+” (O1) “−” (C4) “−” (P9) “+” (O1, O2)
20 “+” (P10) “−” (P8) “+” (O1), “+” (P10)
25 “+” (O1, O2) “−” (P8) “−” (F9) “+” (O1)
30 “+” (Fp1, F7) “−” (C3, Cz) “−” (F3, C3, P3) “+” (Fp2)

Comparison of ERSP in the β-band showed the following
results. At an IPS frequency of 1 Hz, we found a positive
cluster with p = 0.01, which included EEG channels of the
right temporal and frontal brain regions. At an IPS frequency
of 3 Hz, a positive cluster (p = 0.01) was located in the right
temporal and parietal brain regions. A positive cluster (p =
0.02) was located in the left temporal brain region at an IPS
frequency of 8 Hz. In the right temporal brain region, clusters
were found at IPS frequencies of 10 Hz (p = 0.04), 15 Hz
(p = 0.008), and 18 Hz (p = 0.004). At an IPS frequency of
20 Hz, the permutation test revealed a positive cluster with
p < 0.001 in the right frontal, temporal, and parietal brain
regions. At an IPS frequency of 25 Hz, we found a positive
cluster (p = 0.02) involving channels of frontal, occipital, and
left parietal brain regions. A positive cluster was detected in
the occipital brain region with p < 0.001 at an IPS frequency
of 30 Hz.

B. Results of clustering analysis for DFA

Scaling factors (μi
	 f ) in the IPS frequency band, as well

as in the δ-, θ -, α-, and β-frequency bands, were compared
between healthy controls and patients with diagnosed epilepsy
for each of the 9 IPS frequencies.

We considered statistically significant clusters observed
in all scaling factor (μi

	 f ) comparisons across all investi-
gated frequency bands and IPS frequencies. A comprehensive
overview of these findings is presented in Table III, which
lists all statistically significant clusters for all scaling fac-
tor comparisons. Detailed illustrations of these clusters are
shown in the Supplemental Material [56]. Figures 1–5 in
the Supplemental Material show the statistically significant
differences found after statistical analysis of the DFA scaling
factor between the two experimental conditions: control group
and patients with confirmed epilepsy. All EEG channels show-
ing statistically significant differences between experimental
conditions were grouped into positive and negative clusters,
and marked with white circles. In positive clusters, the DFA
scaling factor values are higher in the control group. Let us
consider the detailed results separately for each investigated
frequency range.

Comparison of scaling factor (μi
	 f ) in the band of stim-

ulation frequency showed the following results. At an IPS
frequency of 8 Hz, the permutation test revealed a negative
cluster with p = 0.002, which included the central EEG chan-

nel C4. At an IPS frequency of 18 Hz, a positive cluster was
observed in the occipital region with p < 0.005. At an IPS
frequency of 20 Hz, a positive cluster (p = 0.02) was detected
in the right parietal region of the brain. At an IPS frequency
of 25 Hz, we observed a positive cluster with p < 0.001 in
the occipital brain region. At an IPS frequency of 30 Hz, a
positive cluster (p = 0.04) was detected, which included EEG
channels of the frontal region.

Comparison of scaling factor (μi
	 f ) in the δ-band showed

the following results. At an IPS frequency of 10 Hz, a negative
cluster was detected in the right temporal and central brain
regions (p < 0.01). At an IPS frequency of 20 Hz, a negative
cluster (p = 0.009) included EEG channels of the left parietal
region.

Comparison of scaling factor (μi
	 f ) in the θ -band showed

the following results. At an IPS frequency of 1 Hz, a negative
cluster was identified with p = 0.01, which included EEG
channels of occipital and right parietal brain regions. At an
IPS frequency of 8 Hz, we identified a negative cluster (p <

0.001) in the right parietal brain region. In the central parietal
region, a negative cluster (p = 0.01) was detected at an IPS
frequency of 10 Hz. In the right central and parietal brain
regions, negative clusters were detected at IPS frequencies of
15 Hz (p = 0.02) and 18 Hz (p = 0.04). At an IPS frequency
of 25 Hz, we detected a negative cluster with p = 0.03 in the
right parietal brain region. At an IPS frequency of 30 Hz, the
permutation test revealed a negative cluster (p = 0.03) in the
central brain region.

Comparison of scaling factor (μi
	 f ) in the α-band showed

the following results. At an IPS frequency of 3 Hz, the per-
mutation test revealed a negative cluster with p = 0.008 in
the right temporal brain region. At IPS frequencies of 8 Hz
(p = 0.002) and 15 Hz (p = 0.03), negative clusters were
detected in the central brain region. The negative cluster at
an IPS frequency of 18 Hz (p = 0.02) included EEG channels
of the left parietal brain region. At an IPS frequency of 25 Hz,
a negative cluster with p = 0.03 was found in the left frontal
brain region. At an IPS frequency of 30 Hz, a negative cluster
(p = 0.02) was detected in the left frontal, central, and parietal
brain regions.

Comparison of scaling factor (μi
	 f ) in the β-band showed

the following results. At an IPS frequency of 1 Hz, we found
a positive cluster with p = 0.002, which included EEG chan-
nels of the left parietal brain region. At an IPS frequency
of 15 Hz, a positive cluster (p = 0.003) was located in the
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FIG. 3. Receiver operating characteristic (ROC-curves) for SVM classifiers: (a) all values of DFA scaling factors μi
	 f are used as features;

(b) values of DFA scaling factors μi
	 f from statistically significant clusters are used as features; (c) all values of ERSP wi

	 f are used as features;
(d) values of ERSP wi

	 f from statistically significant clusters are used as features.

occipital brain region. A positive cluster (p < 0.001) at an
IPS frequency of 18 Hz was also located in the occipital
region of the brain. In the occipital and right parietal brain
regions, a cluster was detected at an IPS frequency of 20 Hz
(p = 0.006). At an IPS frequency of 25 Hz, the permutation
test revealed a positive cluster with p = 0.01 in the occipital
brain region. At an IPS frequency of 30 Hz, we detected a
positive cluster (p = 0.02) involving channels of the frontal
brain region.

C. Results of classification for ERSP-based classifier
and DFA-based classifier

Initially, two distinct classifiers were trained for the first
variant (see Sec. II F). The first classifier employed all ERSP
values (wi

	 f ) as predictors. These values were calculated
during photic stimulation across 25 EEG channels, 9 IPS
frequencies, and 5 frequency ranges, yielding 1125 features
in total. PCA reduced this dimensionality to 15 features. The
second classifier utilized scaling factors (μi

	 f ) derived from
DFA, also encompassing 1125 initial features subsequently
reduced to 46 by PCA. Both classifiers aimed to discriminate
between patients and healthy controls.

The classification performance was significantly improved
when using the DFA scaling factors (μi

	 f ) as predictors
compared to the ERSP values (wi

	 f ). This superiority was
observed across all metrics, as demonstrated by the following
F1-scores: F1-scoreμ = 0.78 for the DFA-based classifier, and
F1-scorew = 0.7 for the ERSP-based classifier. Furthermore,
the DFA-based classifier achieved a higher accuracy (0.76
versus 0.67), precision (0.71 versus 0.65), and recall (0.88
versus 0.76) compared to the ERSP-based classifier. These
findings are illustrated by the Receiver Operating Character-
istic (ROC) curves in Fig. 3 [panels (a) and (c) for DFA-based
and ERSP-based classifiers, respectively] and summarized in
Table IV.

To assess the statistical significance of the achieved classi-
fication accuracy, a binomial test was conducted to determine
if it exceeded the no information rate (NIR). NIR represents
the baseline accuracy obtained by simply assigning all test
samples to the most prevalent class in the dataset. The p-value
(Acc > NIR) presented in Table IV indicates the probabil-
ity of observing the same or higher accuracy as the model
performing by chance, assuming the model’s predictions are
essentially random (i.e., equivalent to the NIR). This p-value
corresponds to a hypothesis test where the null hypothesis
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TABLE IV. F1-score, accuracy, precision, and recall for all clas-
sifiers trained on different types of input data

All data Significant clusters

ERSP, wi
	 f DFA, μi

	 f ERSP, wi
	 f DFA, μi

	 f

F1-score 0.7 0.78 0.75 0.83
Accuracy 0.67 0.76 0.7 0.82
Precision 0.65 0.71 0.65 0.78
Recall 0.76 0.88 0.88 0.88
p-value (Acc > NIR) 0.02 0.001 0.01 0.00009

(H0) states that the model accuracy is not significantly better
than the NIR, while the alternative hypothesis (H1) posits
that the model’s accuracy is significantly higher than the
NIR. The statistical testing was performed using the standard
model quality assessment tools available in the caret library
for R [58].

Two additional classifiers, representing the second variant,
were subsequently trained (see Sec. II F). The first classifier
utilized ERSP values (wi

	 f ) calculated for EEG channels iden-
tified as statistically significant clusters, resulting in a total of
132 features (see Sec. III A). The second classifier employed
scaling factors (μi

	 f ) derived from statistically significant
clusters, yielding a total of 36 features (see Sec. III B).

The results revealed two key findings.
(i) Improved performance with cluster-based feature se-

lection. Classifiers trained on statistically significant clusters
demonstrated improved performance compared to those
trained on the entire feature set. Specifically, the ERSP-
based classifier utilizing ERSP values (wi

	 f ) from significant
clusters exhibited an increase in F1-score (0.75 versus 0.7),
accuracy (0.7 versus 0.67), and recall (0.88 versus 0.76), while
maintaining the same precision. Similarly, the DFA-based
classifier using scaling factor values (μi

	 f ) from significant
clusters showed improvements in the F1-score (0.83 versus
0.78), accuracy (0.82 versus 0.76), and precision (0.78 versus
0.71) with no change in recall.

(ii) Superiority of DFA-based classifiers. Consistent with
the initial findings, the DFA-based classifier utilizing scaling
factors (μi

	 f ) as predictors (F1-score = 0.83) demonstrated
significantly better classification performance compared to
the ERSP-based classifier (F1-score = 0.75). This trend was
also observed in accuracy (0.82 versus 0.7) and precision
(0.78 versus 0.65), while recall remained comparable. These
results are further illustrated in Fig. 3 [panels (b) and (d)] and
summarized in Table IV.

Table IV reveals that all four classifiers demonstrate statis-
tically significant accuracy compared to a random classifier.
However, a consistent trend emerges: classifiers utilizing the
scaling factor μi

	 f achieve higher F1-scores than their ERSP-
based counterparts. Notably, the classifier employing μi

	 f and
trained on significant clusters attains an F1-score exceeding
0.8, making it a promising candidate for practical applications
due to its superior performance.

These findings highlight the potential benefits of using sta-
tistically significant clusters for feature selection, improving
classification performance. Moreover, the consistent supe-
riority of the DFA-based classifier reinforces the value of

DFA-derived features in characterizing brain dynamics related
to neurological conditions.

To identify the most influential features for classification,
we employed the Boruta method (see Sec. II G). Figure 4
presents a box-plot diagram ranking features by their impor-
tance level, alongside a topogram visualization of the most
salient features.

Figure 4, panels (a) and (c), presents a box-plot diagram
illustrating the distribution of the z-score of the features, cal-
culated as the ratio of the average decrease in classification
accuracy resulting from the random permutation of features
to its standard deviation. The figure shows only those features
whose z-score is consistently higher than that of the shadow
features.

Analysis of the feature importance reveals distinct patterns
between the DFA-based classifier and the ERSP-based clas-
sifier [cf. panels (a) and (c) in Fig. 4]. For the DFA-based
classifier, which distinguishes patients with epilepsy, the most
important features are associated with long-range temporal
correlations in the central brain area (EEG channel C4) within
the α-band and in the occipital region within the β-band [see
Fig. 4, panel (b); white circles indicate the most important
features for classification]. Conversely, the ERSP-based clas-
sifier identifies ERSP values at high stimulation frequencies
in the parietal, frontal, and right temporal brain areas as the
most influential features for classifying patients with epilepsy
[see Fig. 4, panel (d); white circles indicate the most important
features for classification].

This disparity in feature importance underscores the dis-
tinct information captured by DFA scaling factors (μi

	 f ) and
ERSP values (wi

	 f ), emphasizing the potential of DFA as a
valuable tool for understanding brain dynamics in epilepsy.

Figure 5 presents a visualization of significant brain re-
sponses across various photic stimulation frequencies for both
DFA and ERSP analyses, revealing variations in response
patterns across frequency bands and brain regions. To provide
a more comprehensive visualization of the significant features,
the scalp electrodes were grouped into six distinct regions:
frontal, central, left temporal, right temporal, parietal, and oc-
cipital [see Fig. 5(a)]. Figures 5(b) and 5(c) further depict the
visualization of significant features for both the DFA scaling
factors μi

	 f [Fig. 5(b)] and the ERSP wi
	 f values [Fig. 5(c)].

The y-axis represents the IPS frequencies, while the x-axis
indicates the frequency ranges within which brain responses
were considered significant for classification. Colored seg-
ments highlight brain responses to specific IPS frequencies
within particular frequency ranges and brain regions, indi-
cating their importance for classification. The symbols “−”
and “+” denote negative and positive clusters, respectively.
In positive clusters, the values of the scaling factors μi

	 f or
ERSP wi

	 f were higher in the control group.
So, Fig. 5(b) highlights the features deemed crucial for

classification when utilizing the DFA scaling factor μi
	 f .

Within the δ-band (response frequencies 1 and 3 Hz), a brain
response is observed at IPS frequencies of 10, 20, and 30 Hz
in the central and parietal areas. Similarly, in the α-band (re-
sponse frequencies 8 and 10 Hz), a brain response is detected
at IPS frequencies of 3 and 8 Hz in the central and right
temporal areas, at 18 Hz in the parietal area, and at 25 and
30 Hz in the left temporal, central, and frontal areas. Within
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FIG. 4. Feature significance assessed with the Boruta method: (a) all significant features of scaling factors μi
	 f ; (b) visualization of the most

important features of scaling factors μi
	 f on the head surface; (c) all significant features of ERSP wi

	 f ; (d) visualization of the most important
features of ERSP wi

	 f on the head surface. Feature naming follows the following structure: “IPS frequency” – “frequency band”–“EEG
channel”; “stim” stands for IPS frequency band. White circles indicate the most important features for classification.

the β-band (response frequencies 15, 18, 20, 25, and 30 Hz),
a brain response is observed at IPS frequencies of 15, 18, 20,
and 25 Hz, with a predominant presence in the occipital area
and a partial presence in the parietal area.

Figure 5(c) illustrates the features critical for classification
when employing ERSP values wi

	 f . A brain response in the
δ-band (response frequencies 1 and 3 Hz) was observed at
IPS frequencies of 3 and 8 Hz in the left and right temporal
areas. Additionally, an α-band (response frequencies 8 and
10 Hz) brain response was observed in the left temporal and
parietal areas at IPS frequencies of 3 and 8 Hz. Stimulation
frequencies of 18 and 30 Hz elicited an α-band brain response
in the parietal area. In the β-band (response frequencies 15,
18, 20, 25, and 30 Hz), a brain response is observed at IPS
frequencies of 18, 20, 25, and 30 Hz, primarily in the frontal
area and to a lesser extent in the left and right temporal areas.

IV. DISCUSSION

A. Significant features of ERSP

Analysis of the brain response in the α-band (response
frequencies of 8 and 10 Hz) at stimulation frequencies ( fIPS)
of 3, 8, 18, and 30 Hz [see Fig. 5(c)] revealed a distinct pattern
in parietal and left temporal areas. This can be interpreted
as PD observed at the stimulation frequency, along with its
harmonics and subharmonics. While this pattern is commonly
encountered, researchers have noted that PD predominantly
occurring at low (<6 Hz) or high (>25 Hz) IPS frequencies,
as well as its spread beyond parietal and occipital areas, are
generally considered indicators of brain dysfunction [59]. In

control subjects, PD is expected within the α-band or within
the range of spontaneous activity in occipital regions [59].
Studies utilizing CWT analysis for investigating IPS rely
heavily on the PD response in EEG, often focusing on the oc-
cipital area where PD is most pronounced [24,26]. However,
some studies of pathological conditions, such as schizophre-
nia [60], suggest that PD-based differences between patients
and controls can be identified in a wider area of the cortex,
encompassing midfrontal and central regions.

The observed results present an intriguing pattern. Clusters
identified at low and high frequencies exhibit a positive trend
(i.e., higher PD in control subjects), while clusters in the
α-band display a negative trend (i.e., lower PD in control
subjects). This finding contrasts with that of some researchers
who posit that PD should be elevated in patients with various
neural disorders, with controls demonstrating only faint α-
band PD, albeit lower than in patients [26]. Conversely, other
studies have reported lower PD in patients with migraines,
for instance [24]. Findings specific to epilepsy are ambiguous.
For example, one study [25] suggested lower PD in patients,
based on analysis of cerebral blood flow, which only par-
tially correlates with EEG activity. It is generally accepted
that seizure initiation involves a loss of inhibitory control,
leading to increased excitability [7]. The magnitude of PD
can be linked to cortical excitability and, therefore, consid-
ered a potential biomarker of epileptic conditions, although
this has only been demonstrated for photosensitive epilepsy
cases [61].

The observed findings appear to contradict some exist-
ing studies [7,61]. However, it is important to note that the
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FIG. 5. Visual representation of significant features: (a) schematic of EEG channels segmentation into six regions: frontal (red), central
(purple), left temporal (blue), right temporal (gray), parietal (yellow), and occipital (green); visualization of scaling factors μi

	 f (b) and ERSP
wi

	 f (c) features significant for classification. A segment is colored if the brain response to certain IPS frequency in certain frequency range
and brain region was deemed significant. The symbols “−” or “+” denote negative and positive clusters, respectively.

majority of these studies focus on photosensitive epilepsy,
while the present work exclusively examines nonphotosensi-
tive epilepsy. These two types of epilepsy are likely to differ
in their underlying mechanisms, rendering some previously
established results potentially irrelevant to the findings of the
present study. For example, PD symmetry is a significant
factor: asymmetrical responses suggest impairment located in
one side of the brain, a common finding in focal epilepsy.
The absence of asymmetrical response, as observed in our
results, may indicate that the occipital cortex is not severely
affected and visual pathways remain intact, consistent with
the manifestation of nonphotosensitive epilepsy.

While the established mechanisms linking increased ex-
citability to seizure initiation are difficult to refute, it is
worthwhile to speculate about the nature of excitability it-
self. In general, decreased excitability is often encountered
in patients exposed to antiepileptic drugs [62]. However, this
cannot be the case in the present study, since epilepsy was
drug-resistant in all patients and none of the patients were tak-
ing antiepileptic drugs at the time of clinical monitoring. Our
findings indicate that patients exhibit decreased excitability in
frontal and temporal areas, a pattern atypical for photosensi-
tive epilepsy [59]. However, it is well known that excitability
is dynamic [7]. For instance, cortical excitability can decrease
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in the peri-ictal state following a seizure [63]. Therefore,
we propose that nonphotosensitive epileptic patients may ex-
perience periods of heightened excitability, coinciding with
seizure onset, while at other times excitability may be re-
duced, potentially even lower than in controls, as part of a
compensatory mechanism.

B. Significant features of DFA

A notable discrepancy emerges when comparing cluster
patterns generated by ERSP and DFA analyses. While ERSP
and DFA clusters exhibit significant overlap in the α- and
β-bands, including concordant patterns of positivity and nega-
tivity, they diverge considerably in the δ range. Notably, ERSP
and DFA clusters in the δ range do not overlap in the “response
frequency/IPS frequency” space.

Further differences arise in the spatial distribution of clus-
ters on the scalp. For instance, ERSP clusters in the β-band
are predominantly localized in frontal and, to a lesser extent,
temporal areas. In contrast, DFA clusters in the β-band are ex-
clusively confined to occipital and parietal regions. Similarly,
DFA clusters in the α-band are broadly distributed across the
cortex, whereas ERSP clusters in the α-band are primarily
concentrated in parietal areas.

A direct comparison of ERSP and DFA features is
challenging due to the ongoing debate surrounding the in-
terpretation of the DFA exponent and the general presence
of long-range temporal correlations in neuronal oscillations.
Nonetheless, a prominent hypothesis posits that the brain op-
erates in a critical state, and LRTC reflects this critical state
dynamics [2,64]. Computational models have demonstrated
that criticality in neuronal networks is associated with optimal
information processing [65]. At the level of neuronal popula-
tions, criticality manifests as scale-free distributions of local
field potential propagations, so-called neuronal avalanches
[4].

It was shown that LRTC emerges only when networks
produce critical neuronal avalanches, and this occurs when
excitatory and inhibitory connectivities are balanced [8]. Im-
portantly, these studies suggest a crucial functional role for
LRTC: an optimal level of temporal structure in oscilla-
tions exists, and deviations from this optimum can lead to
significant functional impairments [4,8]. This emphasis on
excitatory-inhibitory balance aligns with existing models of
epileptic seizure initiation [66,67].

Considering these findings, both ERSP and the DFA ex-
ponent may provide insights into EEG signal features related
to excitatory and inhibitory control. However, given the supe-
rior classification performance of DFA-based classifiers, it is
plausible that DFA features are more robust and potentially
reflect aspects of EEG data missed by CWT-based analysis.
We hypothesize that the presence of LRTC in epileptic EEG
might be one such feature.

V. CONCLUSION

This study explored two distinct approaches for analyzing
EEG data with brain response to intermittent photic stimula-

tion (IPS) in patients with nonphotosensitive focal epilepsy:
classical spectral analysis using CWT, and the assessment
of long-range temporal correlations using DFA. Both ap-
proaches employed features derived from 25 EEG channels, 9
stimulation frequencies, and 5 frequency bands encompassing
potential brain responses. To compare feature characteristics
between patients and healthy controls, cluster analysis was
performed. Additionally, machine learning classifiers were
trained on features from both approaches, considering two
feature sets: all possible features reduced by principal com-
ponent analysis and statistically significant features.

The results demonstrated superior performance of clas-
sifiers based on DFA features. Feature importance analysis
in the machine learning classifiers revealed notable differ-
ences between the significant features identified by CWT and
DFA. Specifically, DFA analysis did not reveal a “resonant”
brain response at very low IPS frequencies, but for higher
IPS frequencies the brain response shifted from frontal and
temporal areas, as observed in CWT clusters, to parietal and
occipital areas. Considering the superior performance of the
DFA-based classifier, this observation suggests that LRTCs,
as assessed through DFA, may offer novel insights into EEG
responses to IPS in nonphotosensitive focal epilepsy.

The findings of this research hold significant value. The
novel aspects of EEG revealed by DFA may provide support
for existing theories regarding epileptic seizure emergence
through mechanisms of excitatory-inhibitory control, as re-
flected in CWT spectra. However, the identified differences
in DFA features suggest that they capture distinct and more
relevant information, considering the results of machine learn-
ing classification. This information may be linked to changes
in LRTCs, characteristic to epileptic EEG. These findings
contribute to research on epilepsy and the role of LRTCs in
neuronal oscillations more broadly.

The study also holds practical implications. IPS is com-
monly employed along with hyperventilation as an express
diagnostic tool for photosensitive epilepsy. As we discussed
in the Introduction, IPS aims to trigger a specific response
in EEG, exclusive to photosensitive epilepsy. The rarity of
photosensitive epilepsy among other cases makes IPS unsuit-
able for general diagnostic purposes. However, our findings
demonstrate that IPS can effectively reveal important fea-
tures even in nonphotosensitive cases using both CWT and
DFA-based approaches. This potentially expands the clinical
application of IPS, as appropriate analysis of EEG during
IPS can reveal distinctions between epileptic patients and
healthy controls. The combination of a common routine with
an IPS session and described data analysis approach creates
prospects for the development of a novel express diagnos-
tic tool that requires no additional clinical procedures but
extends the scope of applicability for a conventional IPS
procedure.
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