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The problem of extracting information on the
dynamics of a studied system from the analysis of opti�
cal coherent tomography (OCT) data [1, 2] is an
urgent problem important for the development of
technical possibilities of monitoring the current state
of the system. In particular, solving this problem favors
improving the technical basis for designing medical
diagnostic complexes intended for early detection of
functional disorders in the dynamics of cerebral blood
vessels. One way to solve this is to perform time�and�
frequency analysis of the blood flow with use of wave�
let�analysis methods ensuring the possibility to obtain
estimates of local spectral characteristics by short�
time signals and nonstationary data [3–6]. However,
the efficiency of these methods depends on an appro�
priate setting of wavelet transform parameters, the
unsuccessful choice of which reduces the reliability of
the revelation of changes in the structure of signals
with a change in the state of the system. To eliminate
this disadvantage, this work proposes an adaptive
approach based on the optimization theory.

Let us consider an example of a Doppler OCT
image of a blood vessel (Fig. 1) where the color grada�
tion is connected with the velocity and direction of

scattering particles, i.e., with the blood flow rate.
Selecting a point positioned inside the vessel (within
the A contour) and tracing the variation of the color
gradation in time for the sequence of B0 images (OCT
scans) make it possible to pass on to studying the tem�
poral dynamics s(t), t = iΔτ, i = 1, …, N0, N0Δτ = T,
where Δτ is the time interval between two scans and
T is the duration of signal s(t). Reaction to an external
action is an important index of vessel functioning; for
this reason, the proposed method is based on compar�
ing the characteristics of two functioning modes—
before and after the action (s0(t) and s1(t), respec�
tively).

When analyzing a relatively short sequence of OCT
scans, it seems suitable to perform preliminary exper�
imental data processing that includes interpolation of
signals s0(t) and s1(t) with step Δt, e.g., by cubic splines
S0(t) and S1(t) and digital filtration using a low�fre�
quency filter to eliminate high�frequency variations
and artifacts. One simple version of the filtration is the
moving average method, the use of which results in
passage to processes F0(t) and F1(t). An example of
preliminary processing of the experimental OCT data
is presented in Fig. 2. Below, analysis of signals F0(t)
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Fig. 1. Example of an image obtained by OCT of a cerebral vessel of a rat.
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and F1(t) after they pass the procedure of preliminary
processing is performed based on wavelet analysis,
which is one of most efficient tools for studying the
time�and�frequency composition of experimental
data.

The continuous wavelet transform of signal F(t)
can be written in the following form:

(1)

where W(ν; t) are wavelet coefficients, ϕ is the basis
function, parameters t and ν characterize the wavelet
shift along the time axis and scale variations of the
basis function, Δt is the discretization interval after
interpolation by the splines (Δt < Δτ), and the asterisk
denotes complex conjugation. In this work, the Morlet
wavelet

(2)

is used as a basis function. It is well localized both in
the temporal and spectral regions. The time�and�fre�
quency resolution is corrected by specifying the
parameter ω0, the central frequency of the wavelet. To
reveal the most significant particularities in the
dynamics in two operation modes, i.e., to find maxi�
mal differences between processes F0(t) and F1(t), it is
necessary to select the optimum set of the parameters
ν and ω0. For this purpose, each of the processes is
partitioned into PF segments with duration MF each
(NF = PFMF, NFΔt = T), which makes it possible to

bring into consideration the fragments  = F(iΔt),
i ∈ [jMF; (j + 1)MF),  j = 0, 1, …, PF, and the corre�
sponding wavelet coefficients Wj(ν, ω0, t). Note that,
in contrast to formula (1), these coefficients depend
on three parameters, with allowance for the additional
parameter ω0 of wavelet function (2). Using the
obtained coefficients, we calculate the mean ampli�
tude A for each fragment of the analyzed process:

(3)

Thus, two sets of local mean amplitudes (ν, ω0) and

(ν, ω0) are calculated for processes F0(t) and F1(t).
Based on them, it is proposed to construct an objective
function of the local mean maximum Rd(ν, ω0):

(4)

where the angular brackets denote averaging over the

ensemble of the quantities (ν, ω0) and (ν, ω0),
i.e., over the index j = 0, 1, …, RF, and σ is the root�

mean�square deviation of the quantities (ν, ω0) and

(ν, ω0) from values averaged over index j. The
choice of function (4) is caused by the necessity to find
parameters that maximize differences between mean
values of amplitudes with respect to variations of these
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Fig. 2. Analyzed processes: (a) initial experimental data in
the form of signals s0(t) and s1(t), (b) processed data after
the interpolation S0(t) and S1(t), and the interpolation and
filtration of F0(t), F1(t), and (c) partition of process F(t).
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values for different parts of signals. Using objective
function (4), one can determine optimum values of
parameters ν and ω0 at which maximal differences in
analyzed processes F0(t) and F1(t) are revealed in the
frequency range. If the parameters are chosen opti�
mally or closely to the optimum level, function (4)
takes values lying in the range (–∞; –1] ∪ [1; +∞). For
all other values of objective function (4), differences
between the analyzed processes are small.

Thus, the proposed algorithm is adaptive by virtue
of the fact that parameters ν and ω0 are chosen using
the introduced objective function (4). It is proposed to
carry out the process of searching for the parameters
based on the stochastic optimization method (algo�
rithm of Monte Carlo statistical trials [7, 8]), which
can be written in the form of the following algorithm.

(1) Generation of random values of parameters ν
and ω0 of the Morlet function within the given fre�
quency range.

(2) Calculation of values of the objective function
Rd(ν, ω0).

(3) Sorting the sequence of values of the objective
function [9] and obtaining a static series the extreme
values of which point to the optimum values of the
parameters ν and ω0, choosing the first or the last value
of the static series depending on which of them is
larger in the absolute value.

In this work, the proposed adaptive method was
applied for quantitative description of changes in the
dynamics of cerebral blood vessels of rats administered
with adrenaline; s0(t) and s1(t) characterize the blood
velocity before and after the change in the adrenaline
level in blood, respectively. Under pathological condi�
tions (vessel�functioning disorders resulting in cere�
bral bleeding), the reaction to adrenaline is weaker as
compared to the norm; this corresponds to relatively
small values of the objective function Rd(ν, ω0). This
makes it possible to introduce the following quantita�
tive criteria:

(5)

where n and p correspond to values of the objective
function for normal and pathological cases and the
angular brackets denote averaging.

The proposed method was tested on experimental
records of OCT signals of five rats (Δτ = 0.14 s and
N0 = 50 for each state). After interpolation and filtra�
tion (NF = 15 000 and Δt = 0.00047 s), the signals were
divided into PF = 3 segments with duration MF = 5000,
which was followed by stochastic optimization of the
objective function for all experiments. The optimiza�
tion was performed separately in ranges reflecting the
influence of different regulation mechanisms: 0.25–
0.75 (the LF range), 0.75–3.0 (the HF range), and
5.0–10.0 Hz (the range of the heartbeat frequency).
The optimization results for Rd(ν, ω0) and values of
oscillation frequency f corresponding to optimum val�
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ues of parameters ν and ω0 are presented in Fig. 3. The
oscillation frequency was calculated by the formula

(6)

which characterizes the relationship between parame�
ters of the wavelet function and frequency of the Fou�
rier spectrum. The clearest distinctions between nor�
mal and pathological cases were revealed in the LF
range and correspond to values θ = 1.23 and α = 1.9.
Criteria (5) exceeding these values correspond to the
normal dynamics. Note that applying classical spec�
tral analysis did not make it possible to reliably distin�
guish between normal and pathological dynamics,
which indicates a higher potential of wavelet�analysis
methods in processing short�time signals. The pro�
posed method of adaptive analysis ensures the possi�
bility of automatic revelation of the most significant
distinctions of the dynamics in different states and is
implemented in the form of an algorithm that does not
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Fig. 3. Results of stochastic optimization: (a) values of the
objective function Rd and (b) frequency corresponding to
optimum values of parameters of the Morlet function.



886

TECHNICAL PHYSICS LETTERS  Vol. 39  No. 10  2013

NAZIMOV et al.

require direct participation of the investigator in
parameter setting. Thus, the influence of human fac�
tors (such as the investigator’s experience) is elimi�
nated, and this circumstance opens wide prospects for
applying this approach in designing automated diag�
nostic complexes for early detection of functional dis�
orders in vessel dynamics.
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