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 A B S T R A C T

During epileptic seizures, brain activity and connectivity undergo dramatic changes. Brain networks transition 
from a balanced resting state to a hyperactive and hypersynchronous state. However, the mechanisms driving 
these state transitions remain unclear. While astrocyte-neuron interactions are increasingly recognized in 
seizure pathophysiology, fundamental questions about the causal role of astrocytes in seizure initiation and 
termination remain unanswered. To understand the dynamic network mechanisms of epileptic seizure initiation 
and propagation in interacting neural and astrocytic networks, we developed a biologically relevant spiking 
neural network model that incorporates reactive astrocytes. This model implements the transition from normal 
to epileptiform activity, including its spontaneous termination, without requiring manual parameter tuning or 
external stimulation. Using extensive numerical simulations, we demonstrate that the interplay between fast 
neuronal dynamics and the slower astrocyte-induced dynamic rearrangement of the neural network’s functional 
architecture results in critical system behavior known as self-organized bistability. This self-organized dynamic 
regime is characterized by the spontaneous triggering of short-lived extreme synchronization events—a 
hallmark of epileptic seizure activity. The model generates trains of seizures, reproducing the distribution 
of intervals between seizures observed in neurophysiological experiments. We also show that gap junction 
connectivity within the astrocyte network plays a protective role against epileptic discharges. Collectively, our 
findings establish a unified framework where astrocyte-mediated self-organized bistability governs epileptiform 
dynamics, revealing glial networks as critical modulators of both seizure generation and suppression in 
pathological neural circuits.
1. Introduction

Epilepsy is a neurological disorder characterized by seizures, sud-
den, uncontrolled bursts of excessive or hypersynchronous neuronal 
activity in the brain [1]. These seizures can manifest in a variety of 
ways, depending on the specific brain regions involved. While epilepsy 
affects approximately 1% of the population, a significant portion (30%) 
remain unresponsive to traditional drug therapies [2–4]. Anti-seizure 
medications primarily act on neurons, providing symptom management 
but failing to alter the onset or progression of epilepsy. Moreover, they 
often carry serious adverse effects. This underscores the critical need 
for novel medications with distinct cellular and molecular targets and 
mechanisms of action.
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To develop effective new therapies for epilepsy, we need to un-
derstand how seizures develop across different scales, from individual 
neurons to entire brain networks. Current epilepsy research has pri-
marily focused on understanding how to suppress hypersynchronous 
neuronal activity that leads to seizures and on identifying the under-
lying changes in neuronal function or network activity that trigger 
these events [5]. This research focus has led to the widely accepted 
hypothesis that epileptic seizures arise from an imbalance between 
excitatory and inhibitory signaling within the brain [6–8]. This im-
balance can result from a variety of factors, including changes in 
neurotransmitter levels, mutations in neurotransmitter receptors, ion 
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channels, and ion transporters, as well as alterations in the connections 
between neurons [9].

Although the study of the pathophysiology of epilepsy has revealed 
a variety of potential mechanisms of seizures initiation and propaga-
tion, the organization of neural networks and the mechanisms, which 
initiate profound changes in neural activity and connectivity observed 
during seizure is heavily debated [5,10,11].

Recently emerging evidence has also suggested a critical role for 
astrocytes in epilepsy [9,12,13], based on their multifaceted roles in 
buffering extracellular ions, clearing extra-cellular neurotransmitters, 
releasing gliotransmitters, and their production of inflammatory medi-
ators [14–16]. Epilepsy triggers a shift in astrocytes’ physiological state, 
known as ‘‘reactive astrogliosis’’, where these cells become ‘‘activated’’. 
This activation involves a complex and dynamic response to various 
pathological conditions. It encompasses a wide spectrum of changes, 
including genetic, epigenetic, molecular, metabolic, structural, and 
functional alterations. These changes are highly specific to the context 
and are regulated by specific signaling events. Reactive astrogliosis is 
a hallmark feature of the epileptic focus in both human patients and 
experimental models of epilepsy [13,15]. The exact role of interactions 
between reactive astrocytes and neurons in triggering and spreading 
epileptic seizures is still not fully understood, despite its potential for 
developing new therapies [17,18].

The communication between neurons and astrocytes operates on 
a slower timescale, spanning seconds to minutes, compared to the 
milliseconds-long timescale of neuronal firing and rapid synaptic trans-
mission [19,20]. This difference in timing suggests that astrocyte-
neuron communication serves distinct functions, potentially influencing 
synaptic strength, long-term synaptic plasticity, and the synchroniza-
tion of neuronal activity within networks [21–23]. Astrocytes interact 
with neurons across multiple scales, from the nano- and microscales, 
influencing individual or multiple synapses within an astrocyte’s terri-
tory, to syncytium-scale networks of astrocytes, connected through dy-
namic gap-junctions, that coordinate the excitability of functional neu-
ronal ensembles and support their energetic demands, to coordinating 
activity across brain regions at the mesoscale [24].

Such complex organization of bidirectional interaction between 
astrocytic and neuronal networks is likely to produce multiscale spa-
tiotemporal collective dynamics in both normal and pathological con-
ditions. Considering that epilepsy is widely considered to be a phe-
nomenon of a fundamentally nonlinear dynamic nature [5,25,26], com-
plex network theory and biologically-realistic dynamical modeling offer 
powerful tools for exploring how different intrinsic and network prop-
erties can result in pathological activity, providing valuable insights for 
both clinicians and researchers.

At present, only a few models partially reproduce certain features 
of the disease at varying levels of detail, while considering the influ-
ence of astrocytes. Most mathematical modeling studies of epilepsy 
development in neuron-astrocytic ensembles investigate the influence 
of astrocytes on neuronal hyperexcitability in a biologically plausible 
and detailed manner, primarily at the cellular level [27–31]. Although 
hyperexcitability of individual neurons can significantly contribute to 
epileptogenesis, epilepsy is widely considered a ‘‘network disease’’ 
driven by aberrant synaptic interactions between neurons [5,32]. The 
importance of considering epilepsy at the network level is supported 
by experimental evidence linking alterations in astrocytic gap junction 
coupling with epilepsy in both rodents and human patients [33]. Few 
mathematical models explore the initiation and propagation of epileptic 
seizures in neuron-astrocytic networks [34–41]. Based on extensive 
experimental data on glutamate — the most intensively studied neuro- 
and gliotransmitter in epilepsy — some of these models investigate 
seizure-like discharges caused by abnormal glutamate uptake in as-
trocytes [34,35], while others describe how Ca2+-dependent astrocytic 
glutamate release promotes neuronal synchronization [36–41]. These 
models depict epileptogenesis as a process in which a recurrent ex-
citatory feedback loop is maintained through bidirectional signaling 
2 
between neurons and astrocytes, leading to hypersynchronous neu-
ronal activity. However, there is evidence that reactive astrocytes 
can release not only excitatory, but also inhibitory gliotransmitters in 
epilepsy, such as GABA. Studies have shown that despite the loss of 
GABAergic interneurons and synaptic inhibition in both human and ex-
perimental temporal lobe epilepsy, several studies have found that tonic 
(extrasynaptic) GABAergic currents remain normal or even increase. 
This suggests that elevated GABA levels are present, originating from 
sources outside of neurons [42–44]. Research indicates that reactive 
astrocytes might be the source of this extra GABA. These astrocytes may 
abnormally produce GABA through either new synthesis or the conver-
sion of excess glutamate. This newly synthesized GABA is then released 
into the extracellular space, potentially via Best1 channels, where it 
activates tonic GABA receptors on excitatory neurons. This activation 
seems to counterbalance the loss of interneuron-mediated inhibition, 
reducing seizure susceptibility and potentially compensating for the 
compromised inhibitory system [43,44]. Moreover, experimental works 
show a protective function of the astrocytic network, preventing over-
excitation and the spreading of neural activity epileptic bursts [17,
45].

To summarize the above, existing computational approaches to 
epilepsy face several critical limitations:

1. Neuron-centric focus. Most models emphasize neuronal mecha-
nisms while oversimplifying or ignoring glial contributions. This 
is particularly problematic given astrocytes’ roles in regulating 
extracellular ions, neurotransmitters, and network excitability.

2. Scale limitations. While cellular-level models capture neuronal 
hyperexcitability, they often fail to address epilepsy as a net-
work phenomenon. The emergent properties of neuron-astrocyte 
networks remain poorly understood.

3. Simplified astrocyte representations. Current network models 
incorporating astrocytes typically focus exclusively on excitatory 
gliotransmission (particularly glutamate) and neglect inhibitory 
GABAergic signaling from reactive astrocytes.

To understand the dynamic network mechanisms of epileptic seizure 
initiation and propagation in interacting neural and astrocytic net-
works, we developed a biologically relevant spiking neural network 
model that incorporates astrocytes. This model implements the tran-
sition from normal to epileptiform activity, including its spontaneous 
termination, without requiring manual parameter tuning or external 
stimulation. We took as a starting point our previous studies where 
we showed that a phenomenological scale-free network model of 
coupled Kuramoto phase oscillators under excitability resource con-
straints can generate the epileptic-seizure-related extreme synchro-
nization events [25,26]. Through theoretical analysis and numerical 
simulation, we established that the appearance of switches is rooted in 
spatial self-organization and temporal self-similarity of the network’s 
critical dynamics. In this paper, we enhance the model’s biological 
plausibility by replacing Kuramoto oscillator with the Izhikevich model 
of a spiking neuron, and the phenomenological description of excitabil-
ity resource consumption with the influence of reactive astrocytes 
on synaptic transmission. Using extensive numerical simulations, we 
demonstrate that the interplay between fast neuronal dynamics and 
the slower astrocyte-induced dynamic rearrangement of the neural 
network’s functional architecture results in critical system behavior 
known as self-organized bistability. This self-organized dynamic regime 
is characterized by the spontaneous triggering of short-lived extreme 
synchronization events—a hallmark of epileptic seizure activity. The 
model generates trains of seizures, reproducing the distribution of 
intervals between seizures observed in neurophysiological experiments. 
We also show that gap junction connectivity within the astrocyte 
network plays a protective role against epileptic discharges.
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2. Model details

The imbalance of inhibition and excitation in neuronal signal trans-
mission has been widely considered a key trigger for epileptic seizures
[7]. Studies in both human and experimental models of temporal lobe 
epilepsy have consistently demonstrated a reduction in GABAergic 
interneurons within the hippocampus, leading to diminished synaptic 
inhibition [42]. We focus on a scenario where inhibition surrounding 
the epileptic focus has already been disbalanced. Our focus is on 
the properties of astrocyte-induced modulation of excitatory synap-
tic transmission within the neuronal network of the epileptic focus. 
Highly connected hubs in brain networks are crucial for seizure prop-
agation [6]. When inhibition is disrupted, these hubs become more 
synchronized and interconnected, allowing excessive neural activity to 
spread rapidly from the seizure focus throughout the brain [46,47]. 
We chose significantly heterogeneous scale-free (SF) network model 
because of its demonstrated ability to reproduce focal epilepsy network 
properties and its established association with epileptic seizures in pre-
vious modeling studies [48,49]. Our SF spiking neural network consists 
of synaptically coupled neurons (90% excitatory and 10% inhibitory 
neurons) modeled using the Izhikevich model [50].

Based on experimental data showing that astrocytes interact with 
multiple neurons, hundreds of dendrites, and thousands of synapses 
— thus having the ability to coordinate activity from neuronal en-
sembles — each astrocyte in our model bidirectionally interacts with 
five excitatory neurons [24]. Astrocytes, generating calcium signals, are 
connected by local gap junction diffusive couplings and interact with 
excitatory neurons via chemicals diffusing in the extracellular space. 
Hyperactivation of excitatory neurons during the onset of an epileptic 
seizure causes strong astrocytic Ca2+ signals, that are triggered by neu-
rotransmitters released by neurons. Increased Ca2+ signaling induces 
the release of GABA into the extracellular space. GABA activates tonic 
GABAA receptor mediated currents in excitatory neurons and reduces 
seizure susceptibility, thereby apparently compensating for the loss 
of interneurons [43,44]. In the model we describe a compensatory 
anti-epileptic mechanism of astrocytic influence by Ca2+ mediated 
gliotransmission to curb epileptiform activity in pathological tissue. 
The scheme of the network topology is shown in Fig.  1.

2.1. Neural network

Among the existing biologically plausible neuron models, we chose 
the Izhikevich model [50] of membrane potential dynamics due to its 
computational efficiency in simulating large-scale networks while being 
able to reproduce the dynamics of almost all types of cortical neurons. 
The Izhikevich neuron model can be represented by the following 
system of differential equations [50]: 
𝑑𝑉𝑖
𝑑𝑡

= 0.04𝑉 2
𝑖 + 5𝑉𝑖 − 𝑈𝑖 + 140 + 𝐼app,i + 𝐼syn,i;

𝑑𝑈𝑖
𝑑𝑡

= 𝑎(𝑏𝑉𝑖 − 𝑈𝑖);
(1)

with the auxiliary after-spike resetting 

if 𝑉𝑖 ≥ 30 mV, then
{

𝑉𝑖 ← 𝑐
𝑈𝑖 ← 𝑈𝑖 + 𝑑,

(2)

where the subscript 𝑖 corresponds to the neural index, 𝑉𝑖 and 𝑈𝑖 are 
dimensionless variables. Following [50], Eq. (1) was obtained by fitting 
the spike initiation dynamics of a cortical neuron so that the neuronal 
membrane potential 𝑉𝑖 has mV scale and the time 𝑡 has ms scale. The 
applied current 𝐼app,i simulates the input signal, 𝐼syn,i is the synaptic 
current.

As an input signal 𝐼app,i, each neuron in the network received a 
direct current 𝐼DC and Poisson noise. The Poisson noise was represented 
by a sequence of rectangular pulses with an amplitude 𝐼  and a 
Poiss

3 
duration 𝑡Poiss. The inter-pulse interval was randomly selected from a 
Poisson distribution: 
𝑃 (𝑚) = 𝜎𝑚

𝑚!
exp−𝜎 , (3)

where 𝑃  is the probability, 𝑚 is the number of events, and 𝜎 is the 
expectation value.

A SF network was chosen for the topology of synaptic connectivity 
in the neuronal network. SF networks are characterized by a distinct 
degree distribution exhibiting a power-law relationship: a small number 
of nodes, known as hubs, have a disproportionately high number of 
connections compared to the average. This power-law distribution of lo-
cal cluster sizes reflects the structural self-similarity characteristic of SF 
networks. Another key feature of SF networks is their clustering coeffi-
cient distribution. This distribution also follows a power-law, indicating 
that nodes with fewer connections tend to be part of densely intercon-
nected sub-networks. These sub-networks are connected to each other 
through the network’s high-degree hubs. To generate SF topology in the 
network model, we used the Barabasi–Albert algorithm [51], where the 
network grows through preferential attachments.

The Barabási-Albert algorithm, while creating a SF graph, results in 
bidirectional connections between nodes. This differs from the unidirec-
tional nature of chemical synapses in the brain. To align with biological 
reality, we modified the generated SF network by randomly removing 
one direction of each connection. Neuronal types were randomly as-
signed, with 90% of neurons in the network designated as excitatory 
and the remaining 10% as inhibitory.

The synaptic current, 𝐼syn,i, of 𝑖th neuron represents the sum of all 
the currents received from its presynaptic neurons, averaged over the 
number of synapses, and is calculated according to the formula [52,53]: 

𝐼𝑠𝑦𝑛,𝑖 =
1

𝑁𝑖𝑛,𝑖

𝑁𝑖𝑛,𝑖
∑

𝑘=1

𝑤𝑠𝑦𝑛,𝑘(𝐸syn − 𝑉𝑖)
1 + exp(−𝑉pre,k∕𝑘syn)

, (4)

where 𝑁𝑖𝑛,𝑖 is the total number of synapses, 𝑤𝑠𝑦𝑛,𝑘 is the weight of the 
𝑘th synapse associated with the neuron (see Section 2.3). The weights 
of excitatory synapses are modified by the influence of astrocytes 
associated with a given neuron, whereas inhibitory synapse weights 
remain constant. 𝑉pre is the membrane potential of the presynaptic 
neuron, 𝐸syn is the synaptic reversal potential. Parameter 𝑘syn denotes 
the steepness of synaptic activation function threshold. We neglect the 
synaptic and axonal delays in system for simplicity.

The descriptions of neural network parameters and their values can 
be found in Table  1.

2.2. Astrocytic network

The astrocytic network consists of 𝐴 astrocytes connected via lo-
cal diffusive coupling with nearest neighbors. We utilized the Ullah 
model [54] as a model for the calcium signalization of an astrocyte. 
This model is a system of differential equations that describes the 
dynamics of intracellular concentrations of two key active substances: 
calcium ions (Ca2+) and inositol 1,4,5-trisphosphate (IP3) molecules: 
𝑑[Ca2+]𝑖

𝑑𝑡
= 𝐽ER − 𝐽pump + 𝐽leak + 𝐽in − 𝐽out + 𝐽Gca;

𝑑ℎ𝑖
𝑑𝑡

= 𝑎2

(

𝑑2
[IP3]𝑖 + 𝑑1
[IP3]𝑖 + 𝑑3

(1 − ℎ𝑖) − [Ca2+]𝑖ℎ𝑖

)

;

𝑑[IP3]𝑖
𝑑𝑡

=
[IP3]∗ − [IP3]𝑖

𝜏𝐼𝑃 3
+ 𝐽PLC𝛿 + 𝐽glu + 𝐽Gip3

(5)

where 𝑖 is the astrocyte index. The variables [Ca2+] and [IP3] are 
represent the concentrations of cytosolic calcium and IP3, respectively. 
ℎ is a fraction of activated IP3 receptor on the endoplasmic reticulum 
(ER) membrane. 𝐽𝐸𝑅 is Ca2+ flux from the ER to the cytosol, 𝐽𝑝𝑢𝑚𝑝 is 
the pump flux from cytosol to ER, 𝐽𝑙𝑒𝑎𝑘 is the leakage flux from the 
ER to the cytosol. The fluxes 𝐽  and 𝐽  describe the exchange of 
𝑖𝑛 𝑜𝑢𝑡
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Fig. 1. Neuron-astrocyte network topology. Neurons within the network are connected according to the SF graph. The neural network consists of 90% excitatory 
and 10% inhibitory neurons. Excitatory neurons interact bidirectionally with nearby astrocytes through tripartite synapses. Glutamate released from the presynaptic 
excitatory neuron activates metabotropic glutamate receptors (mGluRs) on the astrocyte membrane. Metabotropic receptors are G-protein-coupled receptors 
that activate phospholipase C-𝛽 (PLC𝛽 ), leading to an increase in intracellular concentration of inositol 1,4,5-triphosphate (IP3). IP3 molecules diffuse to the 
endoplasmic reticulum (ER), where they bind to IP3 receptor (IP3R) channels. This process results in the release of calcium from ER and an increase in cytosolic 
calcium concentration (calcium event). Epileptic activity induces GABA (gamma-aminobutyric acid) production in astrocytes. This process is mediated by the 
decarboxylation of glutamate by the enzyme glutamate decarboxylase (GAD). Upon release into the extracellular space, GABA activates extrasynaptic GABAA
receptors on excitatory neurons, eliciting tonic inhibitory Cl− currents. These currents subsequently attenuate neuronal excitability, contributing to the suppression 
of epileptic activity. Astrocytes are interconnected via gap junctions, which are permeable to IP3 and Ca2+.
calcium with the extracellular space. 𝐽PLC𝛿 describes the production of 
IP3 by phospholipase C𝛿 (PLC𝛿), 𝐽𝑔𝑙𝑢 describes the glutamate-induced 
IP3 production in response to neural activity (see Section 2.3). These 
fluxes are expressed as follows: 

𝐽ER = 𝑐1𝑣1[Ca
2+]3ℎ3[IP3]3

(

𝑐0∕𝑐1 − (1 + 1∕𝑐1)[Ca
2+]

)

(

([IP3] + 𝑑1)([Ca
2+] + 𝑑5)

)3
;

𝐽pump =
𝑣3[Ca

2+]2

𝑘23 + [Ca2+]2
;

𝐽leak = 𝑐1𝑣2
(

𝑐0∕𝑐1 − (1 + 1∕𝑐1)[Ca
2+]

)

;

𝐽in =
𝑣6[IP3]2

𝑘22 + [IP3]2
;

𝐽out = 𝑘1[Ca
2+];

𝐽PLC𝛿 =
𝑣4

(

[Ca2+] + (1 − 𝛼)𝑘4
)

[Ca2+] + 𝑘4
.

(6)

Astrocytes interact with each other through gap junctions. Gap 
junctions are permeable to the IP3 and to calcium ions [55,56]. Currents 
𝐽Gca and 𝐽Gip3 describe the diffusion of Ca2+ ions and IP3 molecules via 
gap junctions of the 𝑖th astrocyte and can be expressed as follows: 
𝐽Gca = 𝑑Ca

∑

𝑗
([Ca2+]𝑗 − [Ca2+]𝑖);

𝐽Gip3 = 𝑑𝐼𝑃3
∑

𝑗
([IP3]𝑗 − [IP3]𝑖);

(7)

where 𝑗, 𝑑Ca and 𝑑𝐼𝑃 3 represent, respectively, the number of astrocytes 
connected to the 𝑖th astrocyte and the Ca2+ and IP3 diffusion rates. 
The biophysical interpretation of all parameters in Eqs. (5), (6), (7), 
as well as their respective values, can be found in [54]. A summary 
of these parameters, specifically related to the astrocytic network, is 
provided in Table  2. It is important to note that the timescale of the 
calcium dynamics model in astrocytes is in seconds, while the timescale 
of the Izhikevich model (Eqs.  (1) and (2)) is in milliseconds. To ensure 
consistency in timescales within the combined model, the relevant 
model parameters were appropriately rescaled.
4 
2.3. Bidirectional neuron-astrocyte interaction

Each astrocyte in the model bidirectionally interacts with ensem-
ble of 𝑁𝐴 = 5 neurons. Spiking neuronal activity leads to the re-
lease of the neurotransmitter glutamate from the presynaptic termi-
nals into the synaptic gap. Once released, glutamate binds to the 
metabotropic glutamate receptors (mGluRs) located on the membrane 
of astrocytes. This binding event triggers the production of inositol 
1,4,5-trisphosphate (IP3) within the astrocytes. The production of IP3
initiates the generation of a calcium pulse.

The amount of neurotransmitter-glutamate that diffuses from the 
synaptic cleft associated with the 𝑖th pyramidal neuron and reaches the 
astrocyte is described by the following equation [57,58]: 
𝑑𝐺𝑖
𝑑𝑡

= −𝛼glu𝐺𝑖 + 𝑘glu𝐻
(

𝑉𝑖 − 30 mV
)

, (8)

where 𝛼glu is the glutamate clearance constant, 𝑘glu is the release 
efficiency, 𝐻 is the Heaviside step function, and 𝑉𝑖 is the membrane 
potential of 𝑖th pyramidal neuron. Glutamate contacts the mGluRs on 
the astrocyte membrane and initiates the production of IP3. The flux 
𝐽𝑔𝑙𝑢 represents the glutamate-induced IP3 production and is defined as 
follows: 

𝐽glu =

⎧

⎪

⎨

⎪

⎩

𝑖𝑚𝑝glu
𝑁𝐴
∑

𝑖=1
𝐺𝑖, if

𝑁𝐴
∑

𝑖=1
𝐺𝑖 > 𝐺thr,

0, otherwise;
(9)

where the parameter 𝐺thr is the threshold for glutamate, 𝑖𝑚𝑝glu is the 
mGluRs sensitivity coefficient.

It has been shown that reactive astrocytes aberrantly overproduce 
GABA through de novo synthesis and or decarboxylation of excess glu-
tamate [43,44]. Astrocytes in epileptic focus exhibit a tonic release of 
GABA, presumably through Bestrophin−1 channels [43]. Bestrophin−1
channels are Ca2+ activated anion channels, and increased GABA re-
lease could hence be a downstream effect of increased Ca2+ signaling 
in reactive astrocytes [59]. Upon release into the extracellular space, 
GABA activates extrasynaptic GABA  receptors on excitatory neurons 
A
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Table 1
Neural network parameters [50,52].
 Parameter Parameter description Value  
 𝑁 total number of neurons 1000  
 number of excitatory neurons 900  
 number of inhibitory neurons 100  
 The dynamics of the membrane potential of a single neuron  
 𝑎 time scale of the recovery variable 0.02  
 𝑏 sensitivity of the recovery variable to the sub-threshold fluctuations 

of the membrane potential
0.2  

 𝑐 after-spike reset value of the membrane potential −65 mV 
 𝑑 after-spike reset value of the recovery variable 8  
 Input signal  
 𝐼DC amplitude of a direct current (DC) 2.5 μA  
 𝐼Poiss amplitude of Poisson noise pulses 7 μA  
 𝑡Poiss duration of Poisson noise pulses 3 ms  
 𝜎 mathematical expectation (average interval between pulses) 100 ms  
 Synaptic current  
 𝑛0 SF existing nodes 6  
 𝑛 SF new edges 6  
 𝐸syn synaptic reversal potential for excitatory synapses 0 mV  
 synaptic reversal potential for inhibitory synapses −90 mV 
 𝑘syn steepness of the synaptic activation function 0.2 mV  
 𝑤syn0 maximum weight of the excitatory synapse 4.05 mS 
 𝑤syn weight of the inhibitory synapses 3 mS  
Table 2
Astrocyte network parameters [54].
 Parameter Parameter description Value  
 𝐴 number of astrocytes 200  
 𝑐0 total Ca2+ in terms of cytosolic volume 2.0 μM  
 𝑐1 (ER volume)/(cytosolic volume) 0.185  
 𝑣1 max Ca2+ channel flux 6 s−1  
 𝑣2 Ca2+ leak flux constant 0.11 s−1  
 𝑣3 max Ca2+ uptake 2.2 μM s−1 
 𝑣6 maximum rate of activation dependent calcium influx 0.2 μM s−1 
 𝑘1 rate constant of calcium extrusion 0.5 s−1  
 𝑘2 half-saturation constant for agonist-dependent calcium entry 1 μM  
 𝑘3 activation constant for ATP-Ca2+ pump 0.1 μM  
 𝑑1 dissociation constant for IP3 0.13 μM  
 𝑑2 dissociation constant for Ca2+ inhibition 1.049 μM  
 𝑑3 receptor dissociation constant for IP3 943.4 nM  
 𝑑5 Ca2+ activation constant 82 nM  
 𝛼 0.8  
 𝑣4 max rate of IP3 production 0.3 μM s−1 
 1/𝜏𝐼𝑃 3 rate constant for loss of IP3 0.14 s−1  
 [𝐼𝑃3]∗ steady state concentration of IP3 0.16 μM  
 𝑘4 dissociation constant for Ca2+ stimulation of IP3 production 1.1 μM  
 𝑑𝐶𝑎 Ca2+ diffusion rate 0.005 s−1  
 𝑑𝐼𝑃 3 IP3 diffusion rate 0.005 s−1  
and elicits tonic inhibitory Cl− currents, which attenuates neuronal 
excitability. We model this process of astrocytic modulation of neuron 
excitability and synaptic transmission using a phenomenological de-
scription in the following form. The strength of the excitatory synaptic 
input connection 𝑤syn for the neuron interacting with the astrocyte 
decreases proportionally to the amplitude of the calcium pulse in the 
astrocyte. This astrocytic regulation of excitatory synaptic transmission 
is described in the model as follows: 
𝑑𝑤𝑠𝑦𝑛

𝑑𝑡
= 𝛼w(𝑤𝑠𝑦𝑛0 −𝑤𝑠𝑦𝑛) − 𝛽w[Ca

2+], (10)

where 𝛼w is a rate of synaptic connection strength recovery, 𝛽w is 
a strength of astrocytic influence on synaptic transmission, 𝑤𝑠𝑦𝑛0 is 
maximum synaptic weight, [Ca2+] represents the intracellular calcium 
concentration in the astrocyte.

Model equations are integrated using the Euler method with a fixed 
time step, 𝛥𝑡 = 0.1 ms [50]. A detailed listing of model parameters 
and values can be found in Table  1 (Neural network parameters), 
Table  2 (Astrocyte network parameters), and Table  3 (Neuron-astrocyte 
interaction parameters).
5 
3. Global instantaneous order parameter

To assess the degree of synchronization of neuronal dynamics in the 
network, we computed the global instantaneous order parameter, 𝑆(𝑡), 
according to the formula [60,61]: 

𝑆(𝑡) = 1
𝑁(𝑁 − 1)

∑

𝑖≠𝑗
𝑐𝑜𝑠2

(𝜙𝑖(𝑡) − 𝜙𝑗 (𝑡)
2

)

,

𝜙𝑖(𝑡) = 2𝜋
(

𝑡 − 𝑡𝑘𝑖
)

∕
(

𝑡𝑘+1𝑖 − 𝑡𝑘𝑖
)

,

(11)

where 𝑡 is the time in ms, 𝑁 is the size of the neural network, 𝜙𝑖(𝑡)
and 𝜙𝑗 (𝑡) are the instantaneous phases of the 𝑖th and 𝑗th neurons in 
the network, respectively, at time 𝑡; 𝑖, 𝑗 ∈ [1, 𝑁] are the indices of the 
neurons in the network. 𝑡𝑘𝑖  and 𝑡

(𝑘+1)
𝑖  are the time moments of the 𝑘th 

and (𝑘+1)𝑡ℎ membrane potential spikes of the neuron.
A value of 𝑆 = 1 corresponds to complete synchronization of the 

entire network, while 𝑆 = 0.5 corresponds to complete asynchrony of 
the network dynamics.
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Table 3
Neuron-astrocyte interaction parameters [57].
 Parameter Parameter description Value  
 𝑁𝐴 number of neurons interacting with one astrocyte 5  
 𝛼glu glutamate clearance constant 10 s−1  
 𝑘glu efficacy of the glutamate release 100 s−1  
 𝑖𝑚𝑝glu mGluRs sensitivity coefficient 167  
 𝐺thr threshold concentration of glutamate for IP3 production 0.044  
 [𝐶𝑎2+]thr threshold concentration of Ca2+ for the astrocytic modulation of synapse 0.2 μM  
 𝛼𝑤 strength of the astrocyte-induced modulation of synaptic weight 0.01 s−1  
 𝛽𝑤 strength of the astrocyte-induced modulation of synaptic weight 0.02 mS s−1 μM−1 
 𝜏astro duration of the astrocyte-induced modulation of synapse 5 s  
Fig. 2. (A1–D1) Dynamics of the global order parameter in a spiking neuron-astrocyte network without astrocytic modulation of synaptic transmission. The 
network’s behavior across different synaptic connection weights: (A1–B1) is for 𝑤𝑠𝑦𝑛0 = 3.6, while (C1–D1) shows results for 𝑤𝑠𝑦𝑛0 = 4.1. (A1, C1) – spike raster 
of neurons; (B1,D1) – global instantaneous order parameter 𝑆, which quantifies the synchronization level of the neuronal network, and representative trace of 
the membrane potential 𝑉  dynamics of a single neuron within the network. (A2–O2) Dynamics of the global order parameter in a spiking neuron-astrocyte 
network with modulation of excitatory synaptic transmission by astrocytes. The network’s behavior across different synaptic connection weights: (A2–E2) is for 
𝑤𝑠𝑦𝑛0 = 3.8, (F2–J2) – 𝑤𝑠𝑦𝑛0 = 4.05, and (K2–O2) – 𝑤𝑠𝑦𝑛0 = 4.5. (A2, F2, K2) – spike raster of neurons; (B2,G2,L2) – global instantaneous order parameter 𝑆, and 
representative trace of the membrane potential 𝑉  dynamics of a single neuron within the network; (C2,H2,M2) – extracellular concentration of neurotransmitter 
𝐺 released by this neuron; (D2,I2,N2) – intracellular calcium concentration [Ca2+] and IP3 concentration in the astrocyte; (E2,J2,O2) – synaptic weight 𝑤syn. (A3) 
presents the bifurcation diagrams for 𝑆. This diagram maps the network’s behavior as the maximum synaptic connection weight (𝑤𝑠𝑦𝑛0) is varied.
4. Results

We begin by analyzing the model in the absence of astrocytic mod-
ulation of synaptic transmission. Next, we demonstrate how astrocytic 
modulation can dynamically switch the model between synchronous 
and asynchronous states. We will then move on to explore the role of 
astrocytes in timing imbalances during extreme synchronization events 
and the detailed dynamics of neural spikes. Finally, we will analyze 
the statistics of durations between consecutive instances of epileptic 
seizures.
6 
4.1. The influence of reactive astrocytes on the synchronization of neural 
network signaling

We first examine the dynamics of our neuron-astrocyte network 
model in the absence of astrocytic influence on synaptic transmission 
efficiency. In this case, Eq. (10) yields 𝑤𝑠𝑦𝑛 = 𝑤𝑠𝑦𝑛0. The upper panel 
of Fig.  2 illustrates neural network signaling for weak and strong exci-
tatory synaptic couplings. In case of weak excitatory synaptic weights 
(𝑤𝑠𝑦𝑛0 = 3.6) the neural network exhibits asynchronous activity (Fig. 
2A1) with a low value of the global order parameter (𝑆 ≈ 0.5, Fig. 
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Fig. 3. Extreme synchronization events. The plots are obtained for 𝑤𝑠𝑦𝑛0 = 4.05. (A–C) – long simulation time interval (300 s) and (D–F) — single event. (A,D) 
– global instantaneous order parameter 𝑆(𝑡); (B,E) – average interspike intervals (ISI) for two distinct neuronal populations: highly connected and low-connected 
neurons; (C) – calcium events in astrocytes; (F) – spike raster of neurons.
2B1). With an increase in the weights of excitatory synaptic con-
nections (𝑤𝑠𝑦𝑛0 = 4.1), synchronization is observed in the signaling 
of the neural network, with 𝑆 ≈ 0.9 (Fig.  2C1,D1). To analyze the 
transition between these two dynamical states of the modeled neural 
network as a function of excitatory synaptic strength, we constructed 
a one-parameter bifurcation diagram (Fig.  2A3, blue curve), which 
reflects the dependence of the global order parameter on the excitatory 
synaptic strength. The diagram reveals hysteresis in the range 3.77 ≤
𝑤𝑠𝑦𝑛0 ≤ 3.92. The network exhibits an abrupt transition to coherence, 
known as a first-order transition or explosive synchronization [62]. Our 
results are consistent with the previous studies in network dynamics of 
neuron-like oscillators [25,26,63,64]. For values of 𝑤𝑠𝑦𝑛0 < 3.77, only 
an asynchronous regime is observed (𝑆 ≈ 0.5), while for 𝑤𝑠𝑦𝑛0 > 3.92, 
a synchronous regime is possible (𝑆 ≈ 0.9).

Next, we incorporated the influence of reactive astrocytes on exci-
tatory synaptic transmission and investigated its effect on synchroniza-
tion in the neuron-astrocyte network model (Fig.  2, lower panel). As-
trocytic modulation of synaptic transmission was activated through the 
following mechanism: Neuronal action potential generation elevates 
extracellular glutamate concentration (𝐺; Fig.  2 C2,H2,M2). When 𝐺
exceeds a threshold value (𝐺thr), it triggers transient, rapid increases in 
astrocytic intracellular IP3, ultimately leading to calcium impulses (Fig. 
2 D2,I2,N2). Astrocytic activation (characterized by exceeding the in-
tracellular calcium threshold, [Ca2+]thr) temporarily suppresses excita-
tory synaptic weights (Fig.  2 E2,J2,O2). This astrocytic regulation shifts 
the hysteresis towards larger values of the maximum connection weight 
(𝑤𝑠𝑦𝑛0) and expands it on the one-parameter bifurcation diagram of 
the global order parameter (Fig.  2A3). Combined with the bistabil-
ity region in our model, astrocytic modulation of excitatory synaptic 
transmission enables spontaneous transitions between synchronous and 
asynchronous modes when 𝑤𝑠𝑦𝑛0 lies within the hysteresis region. By 
varying the maximal excitatory synaptic strength (𝑤𝑠𝑦𝑛0), we identified 
three signaling modes in the neuron-astrocyte network model: asyn-
chronous regime for weak coupling (𝑤𝑠𝑦𝑛0 < 3.94), synchronous regime 
for strong connectivity (𝑤𝑠𝑦𝑛0 > 4.34) and astrocyte-driven switching 
regime (3.94 < 𝑤 < 4.34), characterized by transitions between 
𝑠𝑦𝑛0

7 
synchronization and desynchronization. The self-organized dynamic 
regime — marked by spontaneous, short-lived extreme synchronization 
events — is proposed to represent epileptic seizure activity. Notably, 
the duration of these events increases with higher values of 𝑤𝑠𝑦𝑛0.

By modeling neuron-astrocyte interactions at various values of four 
key parameters (𝑤syn0, 𝛼𝑤, 𝛽𝑤, 𝑖𝑚𝑝glu), we were able to identify param-
eter ranges within our model that support the spontaneous emergence 
of explosive synchronization:

 3.94 < 𝑤syn0 < 4.34, 0.01 < 𝛼𝑤 < 0.02,
 33 < 𝑖𝑚𝑝glu < 180, 0.008 < 𝛽𝑤 < 0.03.
When investigating the effect of varying a single parameter, the 

remaining ones were held constant according to the values specified 
in Table  3.

4.2. Self-organized bistability in a spiking neural network with reactive 
astrocytes

To assess the interplay between neuronal and astrocytic dynamics 
during the initiation and termination of spontaneous extreme syn-
chronization events, we analyzed their activity in detail. Given the 
scale-free (SF) topology of our neural network — characterized by a 
heterogeneous distribution of connections where a small fraction of 
nodes (hubs) possess disproportionately high connectivity compared 
to average nodes — we compared the dynamics of average inter-
spike intervals (ISI; Fig.  3B,E) between two neuronal populations: 120 
highly connected neurons (≥ 10 couplings) and 880 low-connected 
neurons (0–10 couplings), relative to the global order parameter during 
synchronization events. During synchronous events (Fig.  3F), highly 
connected neurons exhibited a pronounced ISI decrease, from 100 to 
83 ms, whereas low-connected neurons showed a smaller reduction, 
from 83 to 79 ms (Fig.  3E). Notably, in the latter group, spiking 
frequency decreased further within 5 s post-synchronization, consistent 
with astrocyte-mediated suppression of excitatory synaptic weights 
(Fig.  3B,E). To investigate astrocytic contributions, we generated a 
raster plot of astrocyte activity (Fig.  3C), marking intervals of in-
tracellular calcium threshold exceedance ([Ca2+]  = 0.2) in purple. 
thr
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Fig. 4. Correlation analysis between the global instantaneous order parameter, 
𝑆(𝑡), and calcium signals for individual groups of astrocytes.

Astrocytes were ranked by decreasing node degree (based on their 
associated excitatory neuronal ensemble’s total connections), enabling 
direct comparison with 𝑆 (Fig.  3A,C). A strong correlation emerged: 
synchronous astrocyte activity — especially in astrocytes coupled to the 
most highly connected neurons — coincided with sharp rises in 𝑆 (peak 
𝑆 ≈ 0.9). Mirroring the neuronal activity-frequency gradient, astrocytes 
in the raster’s lower tiers displayed low-frequency calcium signals.

To investigate the influence of the synchronous regime on astrocyte 
dynamics, we conducted a correlation analysis between the S index and 
calcium signals for individual groups of astrocytes (Fig.  4). Our analysis 
revealed that the average Ca2+ signal of astrocytes associated with the 
24 most highly connected neurons (≥ 10 couplings) showed a peak 
correlation coefficient with S at a time delay of 2.31 s. As neuronal 
connectivity decreased, this delay diminished slightly: 1.84 s for astro-
cytes linked to neurons with 4–9 couplings (astrocytes 25–118); 1.69 s 
for astrocytes connected to neurons with 0–3 couplings (astrocytes 
119–200). Notably, astrocytes associated with neurons of intermediate 
connectivity (4–9 couplings) exhibited the highest correlation ampli-
tude, suggesting their activity most closely mirrors the dynamics of 
synchronization episodes.

These findings demonstrate that an increase in the synchrony of 
neuronal spiking is accompanied by a transition to a higher spiking 
rate, leading to the release of the neurotransmitter glutamate. Con-
sequently, this glutamate release triggers a rise in intracellular Ca2+
above the threshold level [Ca2+]thr (Fig.  3D). This elevated calcium 
level, in turn, suppresses neurotransmitter release and reduces the 
flow of synaptic current, ultimately disrupting synchronous discharge. 
This suppression of extreme synchronization occurs at an average time 
interval of 1.38 s after calcium reaches its threshold value.

4.3. Synchronization process: microscopic dynamics

To elucidate the mechanism underlying neuronal synchronization, 
we meticulously examined the ISI distributions during the transition 
period from the fully asynchronous regime to the initial point of the 
epileptic seizure. Fig.  3D depicts the key timings during a single event. 
Subsequently, Fig.  5 diagrams chronologically illustrate the evolution 
of ISI distributions. The horizontal axis represents the parameter 𝑟𝑖, 
which reflects the individual order parameter of the 𝑖th neuron, cal-
culated based on its connected neurons according to the formula: 
𝑟𝑖 = 1∕𝑁𝑖𝑛,𝑖|

∑𝑁𝑖𝑛,𝑖
𝑗=1 𝐵𝑖𝑗𝑒

𝜃𝑗
|, where 𝐵 is the adjacency matrix of synaptic 

connections in the network: 𝐵𝑖𝑗 = 1 determines the presence of a 
connection between the 𝑖th and 𝑗th neurons, and the connection is 
absent if 𝐵𝑖𝑗 = 0; 𝜃𝑗 is phase of the 𝑗th neuron; 𝑁𝑖𝑛 is the total number 
of incoming synaptic connections. When the parameter 𝑟𝑖 = 1, the 
local neuron exhibits complete phase synchrony with its immediate 
neighbors, conversely, 𝑟𝑖 = 0 indicates complete desynchronization.

Fig.  5A–D reveals that as we approach 𝑡 = 0, where S reaches its 
maximum, the coefficients 𝑟  migrate towards 1, indicating increased 
𝑖
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synchrony, and the deviation of ISI becomes smaller. Furthermore, 
the second process precedes the first one. This suggests that during 
the formation of an extreme synchronization event, neurons initially 
attain a high firing rate. Subsequently, under the influence of synaptic 
connections, neurons fine-tune their firing patterns, minimizing mutual 
delays. Importantly, this process is independent of the number of 
connections, implying a consistent neuronal behavior across different 
connectivity levels. The reverse process of synchronization destruction 
unfolds in a mirror image (Fig.  5E–H). Initially, neurons lose connec-
tions with their neighbors, remaining in the high spiking rate mode for 
a period of time (the distribution of indices 𝑟𝑖 shifts to the left from 
1). Subsequently, the deviation of ISI increases, eventually leading to a 
completely asynchronous state.

To understand the contribution of inhibitory neuron activity and 
the influence of biologically plausible neuron-astrocyte interactions 
— where astrocytes integrate signals from neuronal ensembles — in 
generating epileptiform spontaneous extreme synchronization events 
in our spiking neuro-astrocytic network model, we present numerical 
simulations of a simplified network model in the Appendix. This simpli-
fied model lacks inhibitory neurons and features astrocytes interacting 
with single neurons rather than ensembles. A comparative analysis 
reveals that the simplified model also exhibits a self-organized bistable 
regime with spontaneous generation of short-lived extreme synchro-
nization events. The absence of inhibitory neurons leads to more precise 
spike synchronization during epileptiform activity, with global order 
parameter values reaching higher magnitudes (𝑆 ≈ 1) compared to 
the full network model discussed in the main text (𝑆 ≈ 0.9). Simi-
larly, astrocytes interacting bidirectionally with only one neuron show 
more correlated calcium activity. However, such near-absolute syn-
chronization in both neural and astrocytic networks is not observed in 
experimental in vivo recordings from animal models of epilepsy [17,45], 
suggesting that the simplified model may overestimate synchronization 
dynamics.

4.4. Impact of IP3 and Ca2+ diffusion in astrocyte gap junctions on neu-
ronal network dynamics

Loss of astrocytic gap junction coupling has been identified as a 
key factor in the initiation and progression of epileptic seizures [33]. 
Partial or complete blockage of gap junctions disrupts astrocyte net-
work connectivity, leading to impaired propagation of Ca2+ waves 
throughout the astrocyte network. This can also result in neuronal 
network hyperactivity due to disruptions in K+ and neurotransmitter 
homeostasis [33,36]. According to experimental data, in the absence 
of pathologies, the diffusion rates of IP3 and Ca2+ through gap junc-
tions between adjacent astrocytes are 0.01–1 s−1 and 0.015–0.03 s−1, 
respectively [54]. In our study, epileptiform activity was observed 
at significantly lower diffusion rates (𝑑𝐼𝑃 3 = 0.005 s−1, 𝑑Ca = 0.005 
s−1), consistent with astrocyte pathology. Upon increasing the diffusion 
rates of IP3 and Ca2+ in the model to values corresponding to healthy 
astrocytes (while maintaining other parameters constant), the neuronal 
network exhibited a stable asynchronous mode, and spontaneous brief 
transitions to synchronous mode were eliminated.

4.5. Comparing extreme synchronization events and epileptic animal EEG 
recordings

To complete our analysis of the spiking neuron-astrocyte network 
model, we investigated the distribution of return intervals between 
consecutive synchronization events. We simulated the model over an 
extended period and constructed a histogram of the distribution of 
time intervals between neighboring synchronization events on a bi-
logarithmic scale. We then performed a linear fit to the obtained data. 
The Pearson’s 𝜒2-test was employed to assess the agreement between 
the observed and expected power-law distributions. We analyzed the 
resulting distributions as a function of two key model parameters: the 
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Fig. 5. The emergence and suppression of an extreme synchronization through the analysis of interspike intervals (ISI) data: (A–D) – the onset of an event in the 
time interval 1.4 s prior to the peak of the order parameter 𝑆, (E–H) – the breakdown of synchrony. Each point on these diagrams represents a specific neuron, 
and its color corresponds to 𝑁𝑖𝑛, the total number of incoming connections. Beneath each diagram are the corresponding ISI and the 𝑟𝑖 index distributions. PDF 
is probability density function. During the initiation of synchrony, ISIs coalesce into a narrow band of values, after that one can see the alignment of spiking 
phases and the progression of individual 𝑟𝑖 indices towards 1. Conversely, during the suppression of the synchronous mode, this process reverses. Notably, the 
ISI behavior of neurons with different connectivity levels does not exhibit statistically significant differences.

Fig. 6. (A) – Distributions of return intervals between consecutive synchronization events. Circles represent the observed distributions P(t), and solid lines show 
respective power-law fits ∼ 𝑒𝛾𝑡. (B) – Averaged statistics of time periods between the EEG hallmarks of absence epilepsy in rats [65]. (C) – Distributions of return 
intervals between consecutive synchronization events for different 𝑤𝑠𝑦𝑛0: 4 (𝜒2 = 0.53, 𝜒2

𝑐𝑟𝑖𝑡 = 28.87, p-value = 1, Sample size = 372); 4.05 (𝜒2 = 0.32, 𝜒2
𝑐𝑟𝑖𝑡 = 

26.3, p-value = 1, Sample size = 561); 4.1 (𝜒2 = 0.26, 𝜒2
𝑐𝑟𝑖𝑡 = 27.59, p-value = 1, Sample size = 664); 4.15 (𝜒2 = 0.19, 𝜒2

𝑐𝑟𝑖𝑡 = 19.68, p-value = 1, Sample size = 
644). The inset shows scaling exponent 𝛾 vs 𝑤𝑠𝑦𝑛0. (D) – Distributions of return intervals between consecutive synchronization events for different 𝛽𝑤: 0.019 (𝜒2

= 1.89, 𝜒2
𝑐𝑟𝑖𝑡 = 27.59, p-value = 0.99, Sample size = 582); 0.02 (𝜒2 = 0.32, 𝜒2

𝑐𝑟𝑖𝑡 = 26.3, p-value = 1, Sample size = 561); 0.025 (𝜒2 = 0.53, 𝜒2
𝑐𝑟𝑖𝑡 = 25, p-value = 

1, Sample size = 364). The inset shows scaling exponent 𝛾 vs 𝛽𝑤.
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Fig. A.7. (A1–D1) Dynamics of the global order parameter in a spiking neuron-astrocyte network without astrocytic modulation of synaptic transmission. The 
network’s behavior across different synaptic connection weights: (A1–B1) is for 𝑤𝑠𝑦𝑛0 = 3.2, while (C1–D1) shows results for 𝑤𝑠𝑦𝑛0 = 3.5. (A1,C1) – spike raster 
of neurons; (B1,D1) – global instantaneous order parameter 𝑆, which quantifies the synchronization level of the neuronal network, and representative trace of 
the membrane potential 𝑉  dynamics of a single neuron within the network. (A2–O2) Dynamics of the global order parameter in a spiking neuron-astrocyte 
network with modulation of synaptic transmission by astrocytes. The network’s behavior across different synaptic connection weights: (A2–E2) is for 𝑤𝑠𝑦𝑛0 = 3.6, 
(F2–J2) – 𝑤𝑠𝑦𝑛0 = 3.8, and (K2–O2) – 𝑤𝑠𝑦𝑛0 = 4.2. (A2, F2, K2) – spike raster of neurons; (B2,G2,L2) – global instantaneous order parameter 𝑆, and representative 
trace of the membrane potential 𝑉  dynamics of a single neuron within the network; (C2,H2,M2) – extracellular concentration of neurotransmitter 𝐺 released by 
this neuron; (D2,I2,N2) – intracellular calcium concentration [Ca2+] and IP3 concentration in the astrocyte; (E2,J2,O2) – synaptic weight 𝑤syn. (A3) presents the 
bifurcation diagrams for 𝑆. This diagram maps the network’s behavior as the maximum synaptic connection weight (𝑤𝑠𝑦𝑛0) is varied.
maximum synaptic weight (𝑤syn0), shown in Fig.  6C, and the strength 
of astrocyte-induced modulation of synaptic weight (𝛽𝑤), shown in 
Fig.  6D. Our findings reveal a significant influence of these parame-
ters on the slope of the return interval distribution (scaling exponent 
𝛾). Increased synaptic connection weight leads to scaling exponent 𝛾
decrease (Fig.  6C), while increased astrocytic influence, conversely, 
increased 𝛾 (Fig.  6D).

For statistical comparison with experimental epilepsy data, we an-
alyzed inter-event intervals from both our neuron-astrocyte network 
model and EEG-recorded seizure patterns in WAG/Rij rats - a validated 
genetic model of absence epilepsy [65]. The study utilized one-year-old 
male WAG/Rij rats with epidural electrodes implanted over the frontal 
cortex (site of maximal spike-wave discharge [SWD] amplitude), along 
with cerebellar reference and ground electrodes. Continuous wavelet 
transform (CWT) was used to represent the EEG signal with high tempo-
ral and frequency resolution, enabling differentiation of activity bursts 
from the remaining EEG. The authors analyzed the distribution of time 
periods (L) between adjacent SWD events. Their results showed that 
the L-interval distributions of SWDs were best approximated by a power 
law with an exponent of −3/2 in all individuals (Fig.  6B). Interestingly, 
we also observed a power-law dependence of the form 𝑃 (𝑡) = 𝑡−3∕2 (Fig. 
6A), with model parameters 𝑤syn0 = 4.05 and 𝛽𝑤 = 0.02, aligning with 
empirical observations of epileptic activity in rodent brains [65–68] 
10 
(Fig.  6B). These studies demonstrate the extreme properties of both 
seizure amplitudes and temporal scaling, both governed by the -3/2 
power law.

5. Discussion

Modeling epilepsy with dynamic models of spiking neural networks 
in isolation from their surrounding multi-component environment in-
herently presents an incomplete picture. We present a biologically 
relevant spiking neuron-astrocyte network model and demonstrate how 
hypersynchronous bursts can be effectively suppressed by the activation 
of so-called reactive astrocytes. The mathematical model represents a 
two-component network composed of interacting neuronal and astro-
cytic layers. The Izhikevich model was used to model spiking neurons, 
which were synaptically coupled according to a degree distribution. As-
trocytes, interacting locally via gap junctions, were described by Ullah’s 
model of intracellular calcium dynamics and activated by glutamate 
diffusing from neuronal synapses. Reactive astrocytes, stimulated by 
calcium elevation, provided feedback to the neuronal layer by releas-
ing GABA. In constructing this feedback, we simulated the activation 
of GABAA synaptic receptors by the astrocytic GABA release. At the 
network level, our model demonstrated that the interplay between 
fast neuronal dynamics and the slower astrocyte-induced dynamic re-
arrangement of the neural network’s functional architecture results 
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Fig. A.8. Extreme synchronization events. The plots are obtained for 𝑤𝑠𝑦𝑛0 = 3.8. (A–C) – long simulation time interval (300 s) and (D–F) - single event. (A,D) 
– global instantaneous order parameter 𝑆(𝑡); (B,E) – average interspike intervals (ISI) for two distinct neuronal populations: highly connected and low-connected 
neurons; (C) – calcium events in astrocytes; (F) – spike raster of neurons.
in critical system behavior known as self-organized bistability. This 
dynamic regime is characterized by the spontaneous triggering of short-
lived, extreme synchronization events related to epileptic seizures. 
Interestingly, the model demonstrated a scale-free distribution of hy-
persynchronous burst appearance, similar to experimental studies of 
absence epilepsy.

Our model represents a local neuron-astrocyte network from an 
epileptic focus. It is established that epileptogenesis involves interac-
tions across macroscopic neuronal and astrocytic populations, as well 
as entire brain structures. Remarkably, the statistical properties of in-
terictal interval durations observed in our large-scale yet local networks 
match those of whole-brain EEG-recorded seizure characteristics. This 
finding suggests that epileptic discharge generation may be connected 
with local network-intrinsic mechanisms which subsequently propagate 
to brain-wide scales.

Similar to our study, many mathematical models incorporating 
astrocytes have shed light on their potential roles in epileptic neuronal 
activity, focusing on both single neurons [27–31] and networks [36–
41]. These models investigate the impact of astrocytic glutamate release 
and uptake on neuronal dynamics, showing that increased astrocytic 
influence, particularly during glutamate release and binding to NMDA 
receptors, can lead to high-frequency neuronal firing [27,28]. Dis-
ruptions in potassium buffering by astrocytes [30,38] and impaired 
function of the astrocytic Na+–K+-ATP pump [31] can also contribute 
to neuronal depolarization and epileptic discharges.

Theoretical research on epilepsy in neuron-astrocyte networks high-
lights the roles of IP3 diffusion [36,37], astrocytic potassium buffer-
ing [30,38], and influence on synaptic transmission [39–41] in seizure 
spread and termination. In a small network model, increasing the con-
nectivity and diffusion rate within astrocytic networks, by increasing 
the number of gap junctions permeable to IP3 molecules, inhibits the 
induction and spread of epileptic seizures [36]. This effect is achieved 
by reducing the frequency of Ca2+ oscillations in astrocytic network, 
leading to decreased glutamate release and a return to normal neuronal 
activity.
11 
However, models of epilepsy fall short in comprehensively repre-
senting the complex interplay between astrocytic networks and neu-
ronal activity. Specifically, they often struggle to accurately capture 
the mechanisms of seizure termination [36] and propagation [37], 
particularly regarding the dynamic interplay between astrocytic cal-
cium waves and neuronal activity, including via gap junctions [36,37]. 
Moreover, existing models lack a comprehensive understanding of the 
intricate relationship between astrocytic K+ buffering and neuronal 
excitability, which plays a crucial role in the initiation and spread of 
epileptic seizures [30,38].

The limitations of our proposed model can be attributed to the 
following key aspects. Firstly, the spiking neuron-astrocyte network 
model is influenced by the well-established experimental observation 
that epileptic seizures occur in brain regions with structural hubs. In 
essence, the SF topology is driven by the desire to create centers of ac-
tivity through which synchronization processes are induced within the 
network. However, in a real brain, the prerequisites for the formation of 
a neural network graph and its spatial structure may differ significantly 
from our model.

Secondly, our model simplifies neuronal interactions by neglecting 
axonal delays, which play a significant role in the temporal dynamics of 
neural networks. Axonal delays can influence synchronization patterns 
and the propagation of epileptiform activity, potentially altering the 
onset, duration, or termination of seizures. Incorporating these delays 
would provide a more biologically accurate representation of network 
behavior and could reveal additional mechanisms underlying seizure 
dynamics.

Future research holds several promising avenues for enhancing the 
biological plausibility of epilepsy models. Recent studies have demon-
strated that optogenetic activation of astrocytes can effectively reduce 
seizures, not through calcium signaling, but by promoting their K+
buffering via the Na+–K+-ATPase pump [17]. This mechanism, by regu-
lating K+ levels, specifically inhibits hyperactive neurons, contributing 
to the cessation of seizures. Furthermore, other experimental work 
highlights the critical role of glia in seizure initiation, revealing that 
generalized seizures arise from the massive release of glutamate into 
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Fig. A.9. The emergence and suppression of an extreme synchronization through the analysis of interspike intervals (ISI) data: (A–D) – the onset of an event 
in the time interval 1.2 s prior to the peak of the order parameter 𝑆, (E–H) – the breakdown of synchrony. Each point on these diagrams represents a specific 
neuron, and its color corresponds to 𝑁𝑖𝑛, the total number of incoming connections. Beneath each diagram are the corresponding ISI and the 𝑟𝑖 index distributions. 
PDF is probability density function. During the initiation of synchrony, ISIs coalesce into a narrow band of values, after that one can see the alignment of spiking 
phases and the progression of individual 𝑟𝑖 indices towards 1. Conversely, during the suppression of the synchronous mode, this process reverses. Notably, the 
ISI behavior of neurons with different connectivity levels does not exhibit statistically significant differences.
the extracellular space, a consequence of glial activity [45]. The re-
markable synchronicity of neurons during the ictal period is facilitated 
by astrocyte communication through gap junctions. Conversely, the 
preictal state is characterized by the presence of only locally synchro-
nized groups of neurons. Notably, glial networks have been observed 
to activate and synchronize over long distances, independent of neu-
ronal activity and synchronicity, suggesting that synaptic transmission 
extends beyond neuronal ensembles during epileptiform activity [45]. 
Integrating these findings into multiplexed epilepsy models will allow 
for a more comprehensive representation of the triggering mechanisms 
underlying the emergence and suppression of extreme synchronization 
events in epileptiform activity.

Future work will also be focused on investigating the balance 
between excitation and inhibition in the network; exploring diverse 
network architectures, such as small-world and random networks; 
testing scenarios for the occurrence and suppression of extreme syn-
chronous events; identifying biophysical characteristics that determine 
the pathology of different epileptic types; and ultimately, discovering 
dynamic correlates that predict the transition from a preictal state to a 
generalized seizure.

Dynamic modeling of nonlinear processes in neurophysiology holds 
immense promise for unraveling the complexities of brain function, 
especially in the context of epilepsy. Through the application of these 
powerful tools, researchers can gain a deeper understanding of the 
intricate interactions between neurons, astrocytes, and other cell types. 
12 
This knowledge can ultimately contribute to the development of more 
effective diagnostic and therapeutic strategies for this debilitating neu-
rological disorder.
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Appendix. Simplified neuron-astrocyte network model

In this Appendix, we present key results obtained from simulations 
of a simplified neuron-astrocyte network model. We examine the lim-
iting case of complete absence of inhibition in the network, coupled 
with reduced astrocytic coverage where each astrocyte is individually 
associated with a single neuron. The model configuration consists of 
𝑁 = 1000 excitatory neurons and an equal number of astrocytes 
(𝐴 = 1000). The model contains the following changes in the descrip-
tion of the mechanisms of neuron-astrocytic interaction: 𝑖𝑚𝑝glu = 500, 
𝐺thr = 0.022; 

𝐽glu =

{

𝑖𝑚𝑝glu𝐺, if 𝐺 > 𝐺thr,
0, otherwise.

(A.1)

The simplified model demonstrates a self-organized bistable regime 
characterized by transient extreme synchronization events in slightly 
different ranges of model parameters compared to the full model pre-
sented in the main text. As evidenced in Figs.  A.7–A.9, the system 
demonstrates a more pronounced extreme synchronization effect. This 
manifests as transition to synchronous states with both higher neu-
ronal synchronization levels and consequently elevated global order 
parameter values. Due to the lack of inhibitory neurons, epileptiform 
activity exhibits tighter spike synchronization, achieving near-maximal 
global order parameter values (𝑆 ≈ 1) compared to the full network 
model (𝑆 ≈ 0.9). Similarly, astrocytes coupled to single neurons display 
heightened calcium activity correlation.
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