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ABSTRACT

Authentic recognition of specific patterns of electroencephalograms (EEGs) associated with real and imagi-
nary movements is an important stage for the development of brain-computer interfaces. In experiments with
untrained participants, the ability to detect the motor-related brain activity based on the multichannel EEG
processing is demonstrated. Using the detrended fluctuation analysis, changes in the EEG patterns during the
imagination of hand movements are reported. It is discussed how the ability to recognize brain activity related
to motor executions depends on the electrode position.
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1. INTRODUCTION

A recently achieved progress in the creation of brain-computer interfaces (BCIs) offered a new actively developing
field of neuroscience and engineering.1 Despite the idea of BCI has a long-term history,2,3 a transition from gen-
eral assumptions to their practical implementation was complicated by the insufficient capabilities of computers
and the limitations of existing knowledge in the field of brain physiology. Although the latter limitations are
still present, the first steps in the BCIs creation have already led to the appearance of promising devices.

A general idea of the BCI consists in the on-line processing of brain signals that includes recognition of mental
actions and their transformation to control commands. In a general sense, BCIs are treated as the devices allowing
humans to perform some actions on the surrounding world by using brain signals instead of muscles.4 Therefore,
BCIs provide an alternative to normal output pathways of the brain that include peripheral nerves and muscles.
Such alternative transformation of humans mental actions into control commands for hardware allows restoring
communication opportunities of disabled people, e.g., humans with disabilities of motor functions.5–7

In order to provide recognition of mental actions, multichannel electroencephalograms are often used as the
source of information about the brain activity due to the simplicity of acquiring these signals within non-invasive
BCIs.8–10 Complex organization of EEG signals requires application of data processing techniques that could
extract information about structural changes in the specific oscillatory patterns occurring during mental actions
for their authentic detection and further transformation into the control commands. In our previous study,11

essential potential of wavelet-based tools12–14 for this purpose was discussed. In particular, it was established
that mental actions influence correlation features of EEG-signals.11 Taking into account this circumstance, here
we characterize correlations in the EEG-data with the detrended fluctuation analysis (DFA)15,16 being a simpler
but powerful method for processing nonstationary time series and short data sets. It allows increasing the speed
of processing experimental data, which is especially important for real-time recognition of mental actions within
a BCI.

The paper is organized as follows. Section 2 provides a brief description of experimental procedure and
the DFA-method used for characterizing power-law correlations in the recorded EEG-signals. In Section 3, we
analyze features of EEG-data associated with mental actions and compare correlation properties of the related
data with the background electrical activity of the brain. Main concluding remarks are given in Section 4.
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2. MATERIALS AND METHODS

2.1 Experiments

Experiments were performed in accordance with the Helsinki declaration in 12 healthy volunteers (both, males
and females) of the ages from 20 to 43. The protocol of the experiments was approved by the local research Ethics
Committee of the Saratov State Technical University. EEG signals were acquired with the electroencephalograph
Encephalan-EEGR-19/26 (“Medicom-MTD”, Taganrog, Russia) using 19 electrodes placed according to the
standard setup 10–20 with two reference electrodes. A preliminary data processing was performed with a band
pass filter with the cut-off frequencies 1 Hz and 100 Hz, and a 50 Hz notch filter. The sampling rate 250 Hz was
used.

Each volunteer was participated in a single experiment of the duration about 30 min. The experimental
procedure consisted of 10 sessions among which 5 sessions included real movements of the right hand (RE), and
other 5 sessions included imaginary movements (IM) when the volunteer imagines that he/she moves the right
hand, with 20 repeated movements (or their imagination) within the session. Before and after the experimental
recordings, EEG signals related to a background electrical activity of the brain were acquired during 5 minutes.
Each movement was performed after a sound signal, and EEG recordings of the duration 3–4 sec after the sound
signal were selected to analyze distinctions from the background brain activity. The RE and IM sessions followed
each other, and a short visual instruction appeared at a monitor before sessions. The experiment was carried
out in the first half of the day at a specially equipped room where effects of external stimuli such as, e.g., bright
light or external noise, were minimized.

2.2 Detrended fluctuation analysis

Analysis of long-range correlations in physiological processes is complicated by at least two main reasons: (i)
a nonstationarity of analyzed time series, and (ii) a rapidly decreasing correlation function that does not allow
authentic estimation of the scaling exponent quantifying the related power-law dependence. Aiming to avoid
these problems, an approach based on a root mean square analysis of a random walk was proposed called as the
DFA.15,16 This method includes a construction of a random walk of the analyzed signal x(i), i = 1, . . . , N as

y(k) =

k
∑

i=1

[x(i)− 〈x〉] , (1)

with 〈x〉 being the mean value (Fig. 1). The resulting function y(k) represents a random walk and is called as
the “profile” of the signal x(i). Further, this profile is divided into parts of equal length n, and a local trend
within each part is estimated by a linear or a nonlinear fitting of y(k). In the original paper,16 a piece-wise linear
function yn(k) was used to describe a local trend, and fluctuations of the detrended time series [y(k)− yn(k)]
were analyzed depending on n

F (n) =

√

√

√

√

1

N

N
∑

k=1

[y(k)− yn(k)]
2
. (2)

After performing these estimations in a wide range of n, a power-law dependence

F (n) ∼ nα (3)

is analyzed, and the scaling exponent α is computed. This exponent allows quantification of correlations in time
series x(i). Thus, the values α < 0.5 relate to the case of anti-correlations where large and small values of x(i)
show an alternation. Larger values (0.5 < α < 1) are related to power-law correlations in time series where
large values of x(i) more frequently occur after large values and vice versa. When α > 1, distinctions from the
power-law statistics may occur. It is important to note, that α has a relation to the scaling exponent describing
the correlation function and, therefore, the DFA is an alternative to the standard correlation analysis revised for
the case of nonstationary data.
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Figure 1. Original time series (a) and the constructed random walk divided into 20 parts with a piece-wise linear function
describing a local trend.

3. RESULTS AND DISCUSSION

Because the motor-related brain activity is a short-term process, we performed analysis of relatively small parts of
experimental recordings after a sound signal when the hand movement (or its imagination) was started. In Fig. 1
an example of EEG-signal of the duration 4 sec consisting of 1000 samples is shown. The DFA enables analysis of
significantly shorter datasets, however, when an asymptotic scaling exponent α is estimated, the case of possible
crossover phenomena should be taken into account. In the analysis of physiological time series, “crossover”
point in scaling may indicate significant changes of correlation properties between the cases of short-term and
long-term correlations.16
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Figure 2. Power-law dependencies F (n) showing distinctions for real and imaginary hand movements.

Figure 2 shows examples of the function (3) in the double-logarithmic plot estimated from EEG-fragments
for the case of real and imaginary hand movements of a volunteer. Before performing statistical analysis over
all experiments, let us discuss some general features of the given dependence. The slope of the dependence
logF (log n) is varied depending on the considered scale. In the range of small n (e.g., n <30), distinctions
between the cases of real and imaginary hand movements are insignificant, and the value of α estimated in
this range of scales may differ from the related value computed for larger n. In general, the case of imaginary
movements is characterized by lower values of α, and the given feature is observed not only in the considered
example, but also in other experiments.
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Figure 3. Distinctions between α-values associated with real and imaginary hand movements for all volunteers. Note
that the value ∆α = αRE − αIM is positive in all experiments, and, therefore, there is a similar change in correlation
properties. The data are given as mean ± SE.

In order to characterize distinctions between real and imaginary hand movements, we introduced a measure
∆α = αRE − αIM . According to Fig. 3, this measure is positive in all experiments although its value is
varied among the subjects. The latter confirms the ability of authentic separation between real and imaginary
movements based on correlation features of EEG-data. In Figure 3, averaged values of ∆α over 5 sessions are
shown. The results remain stable under variations in the length of the analyzed data. Thus, similar changes are
detected when the analyzed data segment was reduced from 4 sec (N = 1000) to 3 sec (N = 750). They confirm
similar effect that was revealed based on multifractal formalism,11 but the used DFA-approach is simpler and
provides quick computing procedure representing an advantage when developing a software for a brain-computer
interface.
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Figure 4. Distinctions between α-values associated with real and imaginary hand movements depending on the electrode
position.

Distinctions between real and imaginary hand movements become more pronounced when the recording
electrode is selected near the forehead. This is illustrated in Fig. 4 where the electrodes are chosen near a line
going from the nape to the forehead. According to this Figure, the difference is 3 times larger when the electrode
position changes from the middle part of the head to the forehead. In the region of the occiput, the distinctions
are larger than in the middle part but still less expressed as compared with the forehead. When the position of
the electrode is varied in the direction from the left side of the head to the right side, no such strong distinctions
are observed.
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4. CONCLUSION

Identification of EEG-patterns associated with the motor-related brain activity is an important problem whose
solution could advance the development of software for signal processing used within BCIs. In this study we
performed experiments with untrained volunteers that included sessions of real and imaginary hand movements.
The acquired multichannel EEG-signals were analyzed with the DFA-approach that has revealed significant
distinctions between the considered types of movements. Moreover, distinctions from the background EEG
were also established. Using the detrended fluctuation analysis we have shown that the related distinctions are
caused by correlation properties of EEG-data. The quality of detection specific EEG-patterns associated with
the motor-related brain activity can be improved by appropriate selection of the electrode position. Stronger
distinctions are revealed when the recording electrode is selected near the forehead.
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