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ABSTRACT

The development of new approaches to detect motor-related brain activity is key in many aspects of science, especially in brain–computer
interface applications. Even though some well-known features of motor-related electroencephalograms have been revealed using traditionally
applied methods, they still lack a robust classification of motor-related patterns. Here, we introduce new features of motor-related brain
activity and uncover hidden mechanisms of the underlying neuronal dynamics by considering event-related desynchronization (ERD) of
µ-rhythm in the sensorimotor cortex, i.e., tracking the decrease of the power spectral density in the corresponding frequency band. We
hypothesize that motor-related ERD is associated with the suppression of random fluctuations of µ-band neuronal activity. This is due to the
lowering of the number of active neuronal populations involved in the corresponding oscillation mode. In this case, we expect more regular
dynamics and a decrease in complexity of the EEG signal recorded over the sensorimotor cortex. In order to support this, we apply measures
of signal complexity by means of recurrence quantification analysis (RQA). In particular, we demonstrate that certain RQA quantifiers are
very useful to detect the moment of movement onset and, therefore, are able to classify the laterality of executed movements.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5136246

The detection of the motor-related brain activity for noninva-
sive electroencephalogram (EEG)-based brain–computer inter-
faces (BCIs) is an actively discussed topic in many areas of
research. This is of special interest in the context of neurorehabil-
itation and non-muscular control of remote devices using BCI-
based techniques. Traditionally used methods for motor-related
feature extraction, such as spatial filtering and time-frequency
analysis, allow one to associate motor actions with event-related
desynchronization (ERD) of µ-band oscillations (8–13 Hz) over
the sensorimotor cortex. However, these features, i.e., location
of brain activity sources, amplitudes of spectral components,
etc., are of strong inter- and intrasubject variability. Moreover,
inherent nonstationarity and a poor signal-to-noise ratio of EEG
signals strongly complicate the detection and classification of
motor-related patterns in single trials. To find new features of
the motor-related brain activity, we explore EEG signals from

the viewpoint of signal complexity. In particular, we put for-
ward the hypothesis that µ-band ERD causes the reduction of
random fluctuations of neuronal activity, resulting in a more reg-
ular behavior of EEG signals during motor task accomplishments.
With this goal in mind, we apply recurrence quantification anal-
ysis (RQA), a nonlinear method that describes the recurrence
structure of a system by several quantifiers, in order to exam-
ine its complexity and uncover hidden underlying phenomena.
Our findings show that certain RQA measures, namely, deter-
minism and recurrence time entropy, allow one to reveal new
features associated with neuronal activity complexity reduction.
These measures are not only sensitive to the transitions from
background to motor-related brain activity but also very use-
ful for distinguishing different types of motor actions (left/right
limbs motion), which is valuable in the context of potential BCI
applications.
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I. INTRODUCTION

The study of motor-related brain activity is a challenging task
at the intersection of neuroscience, medicine, nonlinear physics,
and engineering. This problem is closely related to the neurore-
habilitation of post-stroke patients suffering motor and cognitive
impairment.1 Another branch of actual research demanding brain
motor-related activity decryption is a mental control of robotic sys-
tems, prosthetic devices, and vehicles.2 Translating the recorded
signals of brain activity into control commands, brain–computer
interfaces (BCIs) can provide a communication channel between the
human and the external device.3–5

Recently, considerable progress has been achieved in invasive
BCIs for motor control. This is due to the principles of the invasive
interfaces operation, which rely on the firing properties of individual
neurons or small groups of neighboring neurons modulating their
activity according to the motor tasks.6 In this case, motor-related
neuronal activity patterns are pronounced and well reproduced,
which allows one to develop precise schemes for motor control.5,7

Despite the outstanding ability for an accurate detection and transla-
tion of brain motor commands, the application of invasive BCIs for
daily purposes is extremely difficult since it requires complex brain
surgery, which is performed in rare cases of urgent need.

On the contrary, noninvasive BCIs are easy to apply and much
more convenient in terms of usability. Among the variety of neu-
roimaging methods, electroencephalography (EEG) appears to be
one of the most suitable for routine BCI applications.8 A com-
prehensive review on the current state and future perspectives of
sensorimotor EEG-based interfaces was given by Yuan and He.9

Traditionally, methods of spatial filtering,10,11 machine learning,12,13

and time-frequency analysis14,15 are the core algorithms for feature
extraction in this context.

However, the detection and classification of motor-related pat-
terns of brain activity using noninvasive techniques are much more
complicated. The fact is that EEG simultaneously records electri-
cal activity of a large group of neuronal populations located close
to the measuring sensor.16 Generally, distinct neuronal ensembles
do not behave in coherency. Therefore, EEG signals represent a
complex mixture of local neuronal activity components. The lat-
ter determines inherent critical properties of EEG signals, such as
a poor signal-to-noise ratio and nonstationarity. Besides, a number
of studies reported that traditional features of motor-related brain
activity, such as amplitudes of EEG signals, power spectral density,
time-frequency, and spatial features, basically show inter- and intra-
subject variability.15,17–19 Hence, it is of high interest to find relevant
features and methods that will withstand the discussed weaknesses
of EEG recordings.

It is known that motor tasks block ongoing activity in
the µ-band (8–13 Hz) of a EEG record, i.e., event-related
desynchronization (ERD) takes place.14 Motor-related ERD implies
a time-locked decrease in the number of active neurons involved in
µ-oscillations.20 We hypothesize that this is equivalent to a suppres-
sion of spontaneous fluctuation of neuronal activity in the corre-
sponding frequency band compared to the preceding background
activity. Thus, we expect that motor-related neuronal dynamics
should be reflected in EEG recordings by the signal’s complexity
reduction.

To explore this phenomena, we apply recurrence quantification
analysis (RQA), which provides a rich number of relevant measures
of complexity.21,22 RQA is a powerful tool for the analysis of biolog-
ical signals, specifically heart rate variability,23,24 muscle activity,25,26

sleep,27–29 and pathological EEGs.30,31 Early RQA studies that focused
on EEG analysis demonstrated the ability of RQA measures to quan-
tify N400 event-related potentials (ERPs) in single trials,32 which
emphasizes the robustness of the RQA approach in the context of
the current study.

In summary, this work intends to find new features of motor-
related brain activity with the focus on the motor-related reduction
of EEG signal’s complexity in the µ-band. Here, we test our hypoth-
esis on the upper limb motor execution tasks and apply RQA to
quantify changes of signal complexity caused by the motor task
accomplishment. We demonstrate that certain RQA quantifiers are
sensitive to the transition from background to motor-related brain
activity which, in turn, reveals differences between left and right
upper limb movements.

The paper is organized as follows. Section II describes the
details of our experimental study, the data pre-/postprocessing, and
briefly the RQA method. Section III is devoted to the analysis of the
time-dependent RQA measures and the inference of task vs back-
ground differences along with differences between left and right
limb movements. Finally, we summarize our results and discuss
them in the context of BCI development in Sec. IV.

II. METHODS

A. Participants

Participants were recruited among the employees and students
of the Innopolis University. During the data preparation, we selected
10 subjects (7 male, 3 female) according to the following check-
list: healthy, aged 18–33, right-handed, never participated in this or
similar experiments before, and having no history of brain tumors,
trauma, or stroke-related medical conditions. All the participants
were pre-informed about the goals and design of the experiment.
Experimental studies were performed in accordance with the Dec-
laration of Helsinki and approved by the local research Ethics
Committee of Innopolis University.

B. Data acquisition

EEG signals along with electromyograms (EMGs) from both
hands were recorded using a noninvasive EEG/EMG system
“Encephalan-EEGR-19/26” (Medicom MTD company, Tagan-
rog, Russian Federation). Electrocardiogram (ECG) and electro-
oculogram (EOG) were also recorded for further removal of cardiac
and eye-movement artifacts. All recorded signals were amplified and
digitized at the sampling rate of 250 Hz. In order to record motor
brain activity, we used 9 EEG Ag/AgCl electrodes Fc3, Fcz, Fc4,
C3, Cz, C4, Cp3, Cpz, Cp4 located over the motor cortex accord-
ing to the international “10-10” system proposed by the American
Electroencephalographic Society. To capture hand movements exe-
cution, we placed 4 EMG electrodes as follows: 1 reference on the
wrist and 1 on the forearm muscle for each hand.
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C. Experimental setup

The session started with a 5-min recording of background brain
activity, during which the participants were instructed to relax and
listen to classical music. They were also instructed not to think about
anything special and to make no hand movements. Then, each par-
ticipant, during the active phase of the experiment, performed two
types of motor actions according to the experimental protocol, i.e.,
movements for the left and right hands [Fig. 1(a)]. Each hand move-
ment implied squeezing the hand into a fist after the first signal,
holding it down to the second signal, and then relaxing. The time
interval between the first and the second signals was chosen ran-
domly for each motor task in the range 4–5 s and the time interval
between the second signal of the current task and the first signal
of the next task (resting period) was randomly chosen in the range
6–8 s [Fig. 1(b)]. The active phase of the experiment consisted of
30 repetitions of each type of motor task (60 total) and the overall
duration of the experimental procedure was approximately 18 min
per participant, including background activity recording.

D. Data preprocessing

The following preprocessing steps were carried out to prepare
raw EEG and EMG recordings for further analysis.

First, cardiac and eye-movement artifacts were removed using
recorded ECG and EOG signals via artifact removal method based
on the Gram–Schmidt process.33 A Notch filter around 50 Hz was
applied to EEG and EMG data to exclude power line effects.

Second, we applied a fifth-order Butterworth bandpass filter
in the range of 8–13 Hz to the 18 min multichannel EEG signals in
order to extract µ-band neuronal oscillations associated with motor-
related brain activity. EMG recordings were also bandpass filtered
(10–100 Hz) to capture pronounced high-frequency fluctuations of
muscle activity caused by muscle tension during movement execu-
tion [Fig. 1(c)]. The latter allows one to determine exact times for
the beginning and the end of movement executions and to study the
motor-related brain activity at these specific intervals.

Finally, the bandpass filtered time series (both EEG and EMG)
were split into 60 trials, each lasting 18 s (6 s before and 12 s after the
command, totaling 4500 data points), i.e., 30 attempts for the left
and right hands.

The considered EEG trials represent nine-dimensional mul-
tivariate sets X(t) = (xCp4(t), xC4(t), xFc4(t), xCpz(t), xCz(t), xFcz(t),
xCp3(t), xC3(t), xFc3(t))

T composed of EEG signals recorded over
the sensorimotor brain area [Fig. 2(a)]. To describe brain dynam-
ics in three areas of interest, we separated X into three 3D subsets,
according to their location on the scalp [Fig. 2(b)]:

1. right hemisphere (RH): XL(t) = (xCp4(t), xC4(t), xFc4(t))
T;

2. left hemisphere (LH): XR(t) = (xCp3(t), xC3(t), xFc3(t))
T; and

3. longitudinal fissure (F): XF(t) = (xCpz(t), xCz(t), xFcz(t))
T.

Consequently, from a physical perspective, each brain area is
represented by a three dimensional trajectory, treating the consti-
tutive time series as state variables [Fig. 2(c)]. This way of state
space trajectory construction is convenient in the context of multi-
variate EEG analysis and circumvents the single variable embedding
problem.34–37

FIG. 1. (a) Schematic representation of the experimental procedure. Subjects
were sitting comfortably in the chair while performing motor actions of left and
right hands on audio signal command. (b) Experimental sequence. Time intervals
between the signals were chosen randomly in ranges 4–5 s between first and
second signals for one task and 6–8 s from second signal of previous and first
signals of the next task. (c) Examples of recorded µ-bandpass filtered EEG and
EMG signals (LHM, left-hand movement; RHM, right-hand movement).

Of particular note is the fact that the further analysis deals
with sensor-level EEG recordings. This is done to exclude EEG
pre-processing steps related to source reconstruction and capture
general effects of motor-related activity from the viewpoint of an
overall decrease of complexity of the underlying neuronal processes
in the sensorimotor cortex. The advantages and limitations of such
an approach will be discussed in Sec. III.
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FIG. 2. Step-by-step visualization of the EEG signal analysis. (a) EEG electrodes, located at the sensorimotor area, forming a multivariate set X(t): right hemisphere [subset
XR(t), blue area], left hemisphere [subset XL(t), orange area], and longitudinal fissure [subset XF(t), green area]. (b) Example of a motor-related EEG trial from XR(t)
(left-hand movement). Vertical dashed lines correspond to the first and second audio signal at 0 s and 5 s, respectively. (c) Representation of the current trial from XR(t) as
a trajectory in 3D phase space. (d) Illustrative scheme of the movement execution accessed from a EMG signal (top panel) and corresponding time-dependent measures of
DET (middle panel) and RTE (bottom panel).

E. Recurrence quantification analysis

Being a fundamental property of most dynamical systems,
recurrence implies that the system’s state repeats itself in time.38 It
is represented as neighboring points (states) of the system’s trajec-
tory in its state space. A common way of visualizing the system’s
repeating states is the recurrence plot (RP), which can show struc-
tures such as diagonal and horizontal/vertical lines and areas of
different recurrence densities.21 Certain structures are related to the
system’s complexity, and recurrence quantification analysis (RQA)
was introduced to analyze them numerically using various measures
of complexity.22

To analyze the recurrence structures in the selected brain
areas, using the multivariate set X (Sec. II D), we created a binary
recurrence matrix

Ri,j =

{

1 if (ε − ‖Xi − Xj ‖) < 0,

0 otherwise,
(1)

where Xi,j = X(ti,j), i, j = 1, . . . , N with N = 4500 for the number of
considered states Xi. The recurrence threshold ε determines the size
of the neighborhood in state space in which states are being con-
sidered recurring.21 When analyzing an RP, one should take into
account that the obtained results can crucially depend on the choice
of this threshold. To provide a robust representation of the RP and
ensure comparability within the samples, i.e., data from different
participants, we determined the value of the threshold ε for each
sample as the 3rd percentile of the pairwise distance distribution,
following Kraemer et al.39

To access time dependence of the estimated RQA quantifiers,
we used a running window along the main diagonal line of each RP
with a window size of w = 750 data points (3 s) and a shift δw = 20
data points (0.08 s).

In the current study, we want to quantify regularity and com-
plexity of EEG signals affected by motor tasks execution. Therefore,
we pick two suitable RQA quantifiers, namely, the Determinism
(DET) and the recurrence time entropy (RTE). DET is defined as the
ratio of recurrence points that form diagonal lines to all recurrence
points found in the RP,

DET =

∑w
l=lmin

lP(l)
∑w

l=1 lP(l)
, (2)

where P(l) is the histogram of diagonal lines l in the RP and lmin = 2
is the minimal considered length of a diagonal line. The presence of
diagonal lines in the RP is an important indicator of a determinis-
tic process, since in this case, trajectories at different points in time
evolve in a similar manner. More correlated and regularized pro-
cesses are characterized by longer diagonal lines and less isolated
points.

Along with DET, we estimate the recurrence time entropy
(RTE)—a complexity measure based on the “white” (non-recurrent)
vertical lines indicating recurrence times tw,

RTE = −

Tmax
∑

tw=1

p(tw) ln p(tw), (3)
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where p(tw) = h(tw)/
∑

tw
h(tw) is the estimated probability of a

recurrence time tw and h(tw) is the histogram of recurrence times
obtained from the RP. This RQA measure is well suited for cap-
turing the transitions between periodic and chaotic dynamics (and
vice versa), because it is related to the Kolmogorov–Sinai entropy.40

A regular process results in low RTE values, with a chaotic process
increasing the number of different recurrence times, thus increasing
its distribution h(tw) and, consequently, increasing the RTE value.

Typical single-trial time series of DET and RTE are shown in
Fig. 2(d). One can see the increase of DET and the decrease of RTE
associated with two motor actions, respectively, following the corre-
sponding audio signal. A detailed discussion of RQA results will be
given based on the between-subject analysis in Sec. III. For each par-
ticipant, we average the RQA time series over the trials and exclude
the baseline level (3 s prior the first audio signal),

1DET(t) = DET(t) − DETbckg,

1RTE(t) = RTE(t) − RTEbckg,
(4)

where DETbckg and RTEbckg are mean values of DET and RTE 3 s prior
the first audio signal.

All RQA related computations were performed using the
DynamicalSystems software library for Julia programming
language.41

F. Statistical test

The motor-related changes of the RQA measures calculated
at the different (area, time)-pairs are treated as different aspects of
the data with respect to which the experimental conditions (motor-
task vs baseline and left vs right limb movement) will be compared.
Each (area, time)-pair is tested via statistical t-test. Since we do not
know exactly the locus of the possible differences in the (area,time)-
domain, the multiple comparisons problem (MCP) takes place. To
control family-wise error rate (FWER) and address the MCP, we
used nonparametric statistical test based on the random partitions
following Maris and Oostenveld.42

III. RESULTS AND DISCUSSION

To address the main problem of the current study, namely, the
quantification of an expected reduction in the complexity and ran-
domness of neuronal processes in the sensorimotor cortex in the
execution of motor tasks, we consider general cross-subject effects
of motor-related changes in the corresponding RQA time series.
First, we analyze the transition from (random) background neu-
ronal activity to brain activity in the accomplishment of motor tasks.
Figure 3 shows the results of DET and RTE, averaged over the sub-
jects and along with the standard error, for the movements of right
Figs. 3(a) and 3(b) and left Figs. 3(c) and 3(d) hands. As noted
in Sec. II D, we are particularly interested in differences in results
regarding the right hemisphere (XR, blue), the left hemisphere (XL,
orange), and the longitudinal fissure (XF, green). These results indi-
cate that motion execution is associated with an increase in DET
[Figs. 3(a) and 3(c)]. In addition, DET takes local maxima near
start (approximately 2–4 s after the first audio command) and end
(approximately 7–8 s after the first command) of the motion exe-
cution. The positions of the local maxima are clearly associated

FIG. 3. Time dependence of1DET and1RTE averaged over all subjects (±SE)
for the right hemisphere (XR, blue), the left hemisphere (XL, orange), and the lon-
gitudinal fissure (XF , green) in the case of the right [(a) and (b)] and left-hand
movements [(c) and (d)], respectively. Bold areas highlight the time intervals of
significant divergence from the baseline level (p < 0.05, MCP corrected via a
nonparametric statistical test). In each panel, the red dashed lines indicate the
moments of the first (0 s) and the second (5.5 s) audio signals and the black hori-
zontal line corresponds to zero level. Gray boxes show 3 s baseline interval before
the first audio signal, and red boxes show the interval of movement execution
obtained from averaged EMGs.

with the hand flex and hand relaxation that are performed after the
first and second audio commands, while the DET values decrease
when holding the hands in a compressed state. The execution of
motor tasks in this experimental setup is thus clearly characterized
by the pronounced local increase of DET. In fact, the growth of DET
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implies a predictable or regular motor neuronal activity. This find-
ing is consistent with our hypothesis that motor action is associated
with the suppression of random µ-band fluctuations in the EEG
that are inherent in the background activity. Local peaks of DET are
accompanied by a decrease of RTE [Figs. 3(b) and 3(d)]. This also
shows that the underlying motor neuronal activity recorded by the
EEG becomes less chaotic and complex. A nonparametric statistical
test in the (area,time)-domain (cf. Sec. II F) shows that the described
motor changes of the RQA quantifiers compared to the background
activity are significant (p < 0.05) for all three considered areas dur-
ing the duration of the motor task execution. The occurrence of
significant changes about 1.5 s before and after the execution of the
motor task is related to the half width of the selected window size
w = 3 s. It is noteworthy that the RQA measurements return to the
background level after the end of the movement, which is a clear
indication of the backward transition of the neuronal dynamics into
the background mode.

It should be noted that the RQA time series for the right and left
hands have a similar qualitative time course (two maxima/minima
associated with hand flexion and relaxation) but assume involve-
ment of the different brain areas. Particularly, the right-hand
movement reduces the complexity of neural dynamics in the left
hemisphere more [orange curve in Figs. 3(a) and 3(b)] and the left
hand movement—in the right hemisphere [blue curve in Figs. 3(c)
and 3(d)]. It coincides with the known contralaterality of the brain’s
motor-related activity. However, complexity reduction in the ipsilat-
eral brain area and fissure region, even being not such pronounced,
is also observed during the movement execution. This could be due
to the volume conduction/field spread effect, which is critical for
noninvasive measurements.43 Despite these limitations, analyzing
the complexity of neuronal dynamics using RQA makes it possible
to distinguish between the further discussed lateral types of motor
actions.

Let us take a closer look at the differences in brain dynamics
during right and left-hand movements with respect to contralateral
effects. For further analysis, we only use the XR and XL records and
introduce a measure of asymmetry as the differences between RQA
measures in the right and left hemisphere for both hands,

1DETRL(t) = 1DETR(t) − 1DETL(t),

1RTERL(t) = 1RTER(t) − 1RTEL(t),
(5)

where superscripts R and L indicate right and left hemispheres,
respectively. Figure 4(a) shows the course of 1DETRL(t) and
1RTERL(t) during the motion execution, averaged over all subjects
and along with the standard error. Here, the first audio signal corre-
sponds to the time t = 0. In addition to the previous results, Fig. 4
shows that the reduction of the complexity of the neural dynam-
ics during the execution of left- and right-hand movements takes
place in a different way. A comparison of 1DETRL and 1RTERL for
left- and right-hand movements using a nonparametric statistical
test shows that both measures reflect significant differences between
the types of movement. Specifically, reducing the complexity of the
underlying neuronal dynamics results in pronounced interlateral
asymmetry during movement execution, which is reflected in a max-
imum at DET and a minimum at RTE in the case of the left-hand
movement and vice versa for the right. Note that the asymmetry

FIG. 4. (a) Time dependence of 1DETRL and 1RTERL, derived from EEG data
of the right and left hemispheres [Eq. (5), see text for details]. Measures are aver-
aged over the subjects and displayed asmean±SE. Shaded areasmark the areas
with significant differences between the time series corresponding to left- and
right-hand movements (p < 0.05, MCP corrected via nonparametric statistical
test), and the red boxes indicate themovement execution interval determined from
averaged EMGs. (b) Exemplary representation of motor-related EEG samples
analysis on an individual test level using 1DETRL and 1RTERL. EEG experi-
ments are arranged as follows: left-hand movements (trials 1–30, highlighted in
blue) and right-hand movements (trials 31–60, highlighted in orange).

measures based on both DET and RTE show significant differences
of right- and left-hand motions [Fig. 4(a)]. The introduced measures
discriminate the brain dynamics associated with left- and right-hand
movements may based on a statistical test (cf. Sec. II F) at an inter-
val that approximately covers the motion execution (2.5–8 s after the
first audio signal). In fact, the disclosed properties of motor-related
EEG samples associated with contralateral asymmetry are suitable
for a single-trial analysis and classification. Figure 4(b) shows the
exemplary representation of RQA applied to individual EEG experi-
ments collected from a randomly selected subject. It can be seen that
the chosen RQA quantifiers are able to clearly distinguish between
left- and right-hand movements: the former are characterized by the
positive 1DETRL(t) and simultaneously negative 1RTERL(t) values
and vice versa for the latter.

In summary, we would like to emphasize that the discussed
features of motor neuronal activity detected by EEG signals at the
sensor level through RQA complexity measurements are clearly
observed and well reproduced in the experimental group under con-
sideration. What is more important is that the generality of the
cross-subject analysis provided also applies to the single-trial anal-
ysis [see exemplary illustration in Fig. 2(e)]. The latter, together
with the low computational cost of RQA algorithms, offers the
prospect of their application in EEG-based BCIs for motion control
and assessment. However, the implementation of the RQA meth-
ods for stable operation in real-time detection and classification of
motor-related brain states requires additional extensive research.
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IV. CONCLUSION

We have used RQA to study new features of motor-related
neuronal processes that are measured by noninvasive EEG. In our
analysis, we have focused on the consideration of time-dependent
RQA quantifiers based on diagonal lines (determinism, DET) and
non-recurrent vertical lines (recurrence time entropy, RTE). These
measures are suitable for detecting transitions between regular (peri-
odic) and irregular (chaotic) dynamics and for quantifying the com-
plexity of the system under study. Both quantifiers clearly show that
the direct execution of motor tasks is associated with a large increase
in the regularity of the EEG signals, i.e., a reduction in the complex-
ity of underlying motor-related neuronal processes. In other words,
RQA has shown that µ-band ERD causes a reduction in random
fluctuations in neuronal activity inherent in the background brain
activity, leading to more regular behavior of the EEG signal dur-
ing the motor task execution. In addition to detecting an increase in
motor-related regularity of brain dynamics, DET and RTE measure-
ments are sensitive enough to indicate the difference between two
lateral types of motion due to the inherent differences in neuronal
response. Specifically, we observed a strong increase in regular-
ity in the sensorimotor area contralateral to the executed move-
ment. Despite the limitations of EEG analysis at the sensor level,
such as volume conduction/field spreading effect, interhemispheric
asymmetry of motor-related brain activity was identifiened using
both DET and RTE measures. These findings statistically support
significant differences between two types of performed movements.

Overall, the current results are consistent with and complement
the well-known concepts of motor-related brain processes. We sup-
pose that the discovered features of neuronal dynamics in the sen-
sorimotor cortex and the robust RQA methods of identification and
classification will contribute to the study of the noninvasive EEG-
based BCI development for motor control and rehabilitation.5,44–46
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