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Abstract—Identifying and monitoring indicators of fatigue
during various cognitive exercises is an important task in the field
of cognitive load research and human performance optimization.
Fatigue monitoring allows to evaluate the degree of subject’s
involvement in the process and improve the efficiency of task
performance. The current study compared two methods to de-
termine potential indicators of fatigue during different cognitive
tasks in 21 subjects. The first method is based on an algorithm
for calculating the relative power of electroencephalographic
activity (α + θ)/β. The second method is based on electroocu-
logram extraction and analysis of various blink characteristics.
In particular, the positive amplitude-velocity ratio (pAVR) was
evaluated. The applicability of the algorithms to fatigue detection
in cognitive tasks was compared.

Index Terms—mental fatigue, cognitive task, working memory
task, electrooculography, blink duration, blink amplitude

I. INTRODUCTION

Fatigue is one of the factors contributing to decreased cog-
nitive performance. Increased fatigue can also indicate a low
degree of subject’s involvement in the process of performing
a task. It is a major but usually neglected factor that increases
the number of errors and omissions in performance. Therefore,
there is an ongoing effort to find an effective method to detect
fatigue in workers and learners. Thus, the determination and
control of the degree of fatigue are extremely important both
in the development of brain-computer interfaces for various
purposes [1], [2] and in neurophysiological studies to account
for the fatigue factor [3]–[8].

Literature review showed that most often various biological
signals such as EEG, EOG, ECG [9]–[13] are used to detect fa-
tigue. Much of this research focuses on fatigue and sleepiness
during monotonous vehicle driving. There are also a number
of studies aimed at fatigue in office work [14]. However, the
algorithms in the study data estimate fatigue over long time
intervals of several hours. They are not effective for cognitive
loads of less than one hour. Therefore, this study aims to
identify an algorithm that can detect fatigue in a subject while
performing cognitive tasks within one hour.

The experiment proposed in this paper was conducted with
21 subjects aged between 11 and 13 years old. The experiment
consisted of three blocks with four tasks of different types:

1) Mental arithmetic - solving simple math questions;
2) Working memory - memorizing a set of numbers;
3) Visual search - finding a number in a table;
4) Combined functions - solving, memorizing and finding

numbers in a table.
Within one block, the tasks and complexities were shuffled
randomly. Each task aimed at testing different cognitive func-
tions. The total duration of one block of the experiment is 16
minutes.

II. METHODS

A. EOG characteristics

One approach to assessing fatigue is to analyze elec-
trooculogram (EOG) data [14]. However, the installation of
additional electrodes for taking the oculogram signal is not
always possible and significantly complicates the research
process, since their installation imposes additional restrictions
on human movements. To solve this problem, in Kleifges K.
[15] proposed a method for automated extraction of oculo-
motor component. The method is based on the extraction
of the ICA component from electroencephalogram (EEG)
data, which fully reflects the nature and main components
of the electrooculogram signal. After extracting the required
component, the signal is analyzed and then the required ocular
features are extracted.

To extract the electrooculogram signal from the electroen-
cephalogram, the data decomposition method using Indepen-
dent Component Analysis (ICA) implemented in the MNE
software package [16] was used in the current work. The
”FastICA” method presented in Hyvärinen’s work [17] used as
an algorithm to extract the oculomotor component. To achieve
a more accurate and efficient identification of independent
components using the FastICA method, the EEG signal was
pre-cleaned of low-frequency drift and high-frequency noise
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using FIR filters in the range of 1-40 Hz. This frequency range
is due to the specificity of the oculomotor activity retrieval task
[15] (i.e., the period of one blink cannot be lower than 1 s and
does not exceed 0.025 s).

After decomposing the EEG signals into independent com-
ponents, it is necessary to identify the component related
to oculomotor activity. For this purpose, an iterative z-score
method was used. In this method, the z-score of component
scores is calculated and components whose z-score exceeds
a threshold value are masked. This process is repeated until
no suprathreshold component remains. The channels located
in the frontal area, Fp1 and Fp2, were used to calculate
the component with the most pronounced correlation with
oculomotor activity.

Then, the obtained EOG signal is filtered and cleaned
from various frequency artifacts. For this purpose, the ”agar-
wal2019” [18] method of the neurokit2 software package
[19] was used. This method is presented in Agarwal’s work
[18] and can be used to prepare electrooculographic data for
further analysis. The neurokit method was used to search
for blink moments (peaks) from the cleaned EOG data with
threshold set to threshold = 0.3. The threshold determines the
distance (RMSE) between each blink and the template. The
amplitude (A) to peak closure velocity (PCV) ratio of blinks
was calculated as an indicator of fatigue. This characteristic
(AVR) was presented in the work of Johns [20] and defines a
measure of sleepiness that also reflects the degree of fatigue.
To calculate this characteristic, the ”eog features” function of
the neurokit2 software package was used to obtain the positive
amplitude to velocity ratio (pAVR). The positive amplitude-
to-velocity ratio represents the ratio of the maximum blink
amplitude to the maximum velocity (rate of change) during an
upward blink. These metrics are measured in centiseconds. It is
worth noting that measures A and PCV are related to the same
distance units, their ratio can be derived from uncalibrated
measurements.

B. EEG characteristics

In the recent years, researchers have investigated different
types of fatigue countermeasure technologies, which include
development of electroencephalography (EEG) algorithms to
detect fatigue [21], [22]. Also, Artaud [23] found that EEG
is one of the most reliable indicators of fatigue, and therefore
this approach is promising [22].

In this paper we used the algorithm proposed by Eoh [21]
and validated by Budi [24] which is based on analyzing the
frequency components of EEG recordings in delta, theta, alpha
and beta bands. In their research, Budi et al [24] compared
several different fatigue detection algorithms by examining the
ratios of fast and slow waves. They found that the (α+ θ)/β
algorithm shows a greater change in fatigue characterization
and could potentially be used for fatigue detection.

In our study, the required frequency ranges were chosen as:
θ (4 - 8 Hz), α (8-13 Hz), β (13 - 22 Hz). All 64 channels
of the EEG data were then sectioned into 2-s epochs. Then
an algorithm was used to automatically reject bad epochs

described in Mainak’s paper [25]. The brain region was
divided into three zones: parietal (P1, P2, P3, P4, P5, P6),
frontal (F1, F2, F3, F4, F5, F6) and central (C1, C2, C3, C4,
C4, C5, C6). After that, a spectral analysis was performed
for each epoch and zone in the frequency range (4-30 Hz)
using the ”multitaper” [26] method. After that, the power
ratio (α + θ)/β averaged for all channels of each zone was
calculated. This value was then calculated for each experiment
within a block.

III. RESULTS

The total average elapsed time of the experiment was 67
min ± 8 min. From the study by Gillberg, [27], 30 min of
monotonous driving activity has been found to induce fatigue
during driving. However, the cognitive load offered in this
study did not affect the change in EEG power (α+ θ)/β over
time. The RM ANOVA statistical test showed no significant
results as shown in Table I.

TABLE I
CORRELATION TABLE

Factor Sphericity Correction df F p

Block None 2.000 0.104 0.901
Greenhouse-Geisser 1.323 0.104 0.818

Zone None 2.000 17.280 < .001
Greenhouse-Geisser 1.880 17.280 < .001

Block * Zone None 4.000 1.041 0.391
Greenhouse-Geisser 2.877 1.041 0.379

We found that the relative energy does not change from
block to block for all zones investigated. This may mean that
the (α + θ)/β algorithm is not suitable for fatigue detection
in such experiments.

Another method based on the EOG study showed more
promising results. Figure 1 shows the change in pAVR value
by block.

***
***

Fig. 1. Change in pAVR characterization by block. pAVR is the ratio of
maximum amplitude to maximum blink velocity. The symbol * denotes
statistical significance in post hoc analysis using t-test with Holm’s correction
for multiple comparisons (*** - p < 0.001).
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We analyzed the change in pAVR response throughout the
experiment and averaged for each task. RM ANOVA test
showed statistically significant results shown in Table II.

TABLE II
WITHIN SUBJECTS EFFECTS

Factor Sphericity Correction df F p

Block None 2 9.819 < .001

This result may suggest that to identify indicators of fatigue
when using cognitive tests it is better to analyze the pAVR
characteristic instead of the (α+ θ)/β algorithm.

CONCLUSION

As a result of our study, we compared two approaches
to identify indicators of fatigue from electroencephalogram
data. The statistical test showed that the characteristic (pAVR)
obtained by analyzing the oculogram varies more with time
than (α+ θ)/β. This may indicate that it is better to use the
pAVR method to detect fatigue in experiments with cognitive
load.
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