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a b s t r a c t

We report on self-organization of adaptive networks, where topology and dynamics evolve

in accordance to a competition between homophilic and homeostatic mechanisms, and

where links are associated to a vector of weights. Under an appropriate balance between

the intra- and inter- layer coupling strengths, we show that a multilayer structure emerges

due to the adaptive evolution, resulting in different link weights at each layer, i.e. different

components of the weights’ vector. In parallel, synchronized clusters at each layer are

formed, which may overlap or not, depending on the values of the coupling strengths.

Only when intra- and inter- layer coupling strengths are high enough, all layers reach

identical final topologies, collapsing the system into, in fact, a monolayer network. The

relationships between such steady state topologies and a set of dynamical network’s

properties are discussed.

© 2015 Elsevier Ltd. All rights reserved.
Coupled biological and chemical systems, social groups

and interacting animal species, the Internet and the World

Wide Web, the brain and the stock markets are just a

few examples of systems composed of a huge number of

highly interconnected dynamical components. The modern

approach to capture the global properties of such systems

is to model them as graphs [1–4], where nodes represent

the basic units, and links stand for the interactions be-

tween them, forming a specific connectivity pattern which
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defines the so-called network’s topology. Despite their in-

trinsic differences, a set of surprising common proper-

ties, such as a power law scaling in the network con-

nectivity and the coexistence of modules observed at the

mesoscopic scale, has been revealed in real-world network

(RWN) [5]. The spontaneous emergence of these topologi-

cal features has been recently explained as a consequence

of a self-organization process involving structure-dynamics

adaptation of two fundamental mechanisms [6,7]. The first

one corresponds to the trend of reinforcing those interac-

tions with other correlated units in the network, which is

a well established process known as homophily in the case

of social systems [8] and Hebbian learning in the field of

neuroscience [9]. The second process results instead from

the limitation of the associative capacity, which preserves
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the value of the inputs/outputs received by each unit. This

mechanism is known as homeostasis [10] in neuroscience,

while in social systems it is related to the so-called Dun-

bar’s number [11], which explains the existence of a maxi-

mum number of interactions for an individual.

Up until recently, attention was almost exclusively con-

centrated on networked systems where all components

were treated on an equivalent footing, while neglecting

all the extra information about the temporal- or context-

related properties of RWNs’ interactions. Only in the last

years, and taking advantage of an enhanced resolution in

real data sets, the interest switched to properly frame the

multilayer character of RWNs, by considering them as net-

works made of diverse relationships (layers) between their

constituents [12,13]. The analysis of multilayer networks

started with a reformulation of classical topological param-

eters, such as the shortest path length, clustering coeffi-

cient, centrality or robustness of the nodes [14–17]. From

the dynamical perspective, the multilayer formulation has

been applied both to networks whose layers coexist or al-

ternate in time [13]. In both cases, the multilayer formula-

tion allows to identify synchronization regions that arise as

a consequence of the interplay between the layers’ topolo-

gies [18–20], as well as to define new types of synchro-

nization based on the coordination between layers [21].

In this paper, we focus on how the competition be-

tween homophily and homeostasis can actually lead to

self-organization of ensembles of oscillators into a multi-

layer network structure. To this purpose, we will consider

a generic adaptive network of phase oscillators, and report

the way a multilayer structure of interactions emerges and

is maintained when the weights of the network’s connec-

tions evolve according to the dynamical properties of the

nodes and, conversely, how the evolution of the network

topology influences the dynamics of the nodes and their

ability to synchronize. Particularly, we make use of an ex-

tension of the classical Kuramoto model [22] as a paradig-

matic phase oscillator able to describe the dynamics of a

series of physical, biological, technological and social sys-

tems [23,24]. This way we are able to investigate the inter-

play between the generic dynamics of phase oscillators and

the evolution of the structure where the dynamical units

are constrained to interact.

Our starting point is, then, an ensemble of N oscil-

lators whose dynamics evolves in time. Each oscillator

i (i = 1, . . . , N) has a natural frequency ωi, and, in order

to encompass the most general case, it is described by a

phasor �φi, i.e. a vector of M components φl
i

(l = 1, . . . , M)

which actually stand for its instantaneous, time depen-

dent, phases in each of the M layers of the multilayer

network on which the oscillator interacts with the rest

of the ensemble. For the sake of simplicity, we assume

a Kuramoto-like evolution for the phase φl
i
(t) on each

layer l = 1, . . . , M. Our choice is motivated by the fact that

the interaction of Kuramoto oscillators is a paradigm of

synchronization in nonlinear science [22], and actually

represents (though in its simplicity) a rather elegant way

to encompass synchronous phenomena occurring in many

biological (such as circadian clocks), technological (elec-

trical generators), and social systems (opinion formation).

Furthermore, for each oscillator, we model layer-layer
interactions by an additional coupling term accounting for

the rigidity of the phasor, i.e. implying all-to-all interac-

tions between the different components of the vector �φi.

The resulting evolution of the phasors is given by

φ̇ l
i (t) = ωi + σ1

∑
j �=i

wl
i j(t) sin(φ l

j − φ l
i )

+ σ2

∑
j �=l

sin(φ j
i
− φ l

i ). (1)

Here, {ωi} is a set of randomly assigned natural frequen-

cies distributed uniformly in [−π,π ] (note that the natural

frequency ωi of ith oscillator is the same for all M layers

of the network), and σ 1 and σ 2 are the intra- and inter-

layer coupling strengths, respectively.

This way, the exchange of information of the dynamical

state of each layer relies on the interaction of the phases

within the same oscillator i, which is controlled by the

inter-layer coupling σ 2.

On the other hand, wl
i j
(t) is the weight of the connec-

tion between elements i and j on layer l and it is allowed

to evolve in time, e.g. layers are allowed to reorganize in-

ternally. On each layer l, for each oscillator i and at each

time t, the set of connection weights {wl
i j
} satisfies the

condition
N∑
j �=i

wl
i j = 1. (2)

In other words, we consider the case for which, in Eq. (2),

the input strength received by each unit i within each layer

is constant, as in homeostatic processes [21].

In parallel with the node dynamics given by Eq. (1),

the weights of the links are also evolving following dif-

ferential equations that reflect a competition between ho-

mophily and homeostasis [6,7]. The adaptive evolution of

the weights wl
i j

is governed by

ẇl
i j(t) = pl

i j(t) −
(∑

k �=i

pl
ik(t)

)
wl

i j(t), (3)

where the time dependent quantity pl
i j
(t) is defined as

pl
i j(t) = 1

T

∣∣∣∣
∫ t

t−T

ei(φ l
i
(t ′)−φ l

j
(t ′))dt ′

∣∣∣∣. (4)

Notice that pl
i j

denotes, at time t, the average phase cor-

relation (within layer l) between oscillators i and j over a

characteristic memory time T. It follows from Eq. (3) that

the normalization condition given by Eq. (2) holds at all

times, i.e., the sum of the weights of all incoming connec-

tions at each node within each layer is conserved.

The particular case of a monoplex (M = 1) was exten-

sively studied in Refs. [6,7], both numerically and analyti-

cally, and it was shown that a large region exists in the pa-

rameter space (σ 1, T) where, starting from random initial

conditions for the weights w1
i j

and phases φ1
i
, the network

asymptotically reaches a state organized in synchronous

clusters. Within this regime, the global phase coherence

is rather small while the local coherence (i.e. the level of

phase synchronization of each oscillator within its neigh-

borhood) is very high, showing, at the same time, a scale-

free distribution of the connection weights w1
i j

as t → ∞.



V.V. Makarov et al. / Chaos, Solitons and Fractals 84 (2016) 23–30 25
As we are here interested on investigating the compe-

tition between Hebbian learning and homeostasis in mul-

tilayer networks, we analyze the synchronization proper-

ties of the ensemble as a function of the two coupling pa-

rameters σ 1 and σ 2. In the following, and without loss of

generality, we will fix T = 100, and concentrate on the

analysis of the solution of Eqs. (1) and (3) for N = 100 os-

cillators and M = 10 layers. The purpose is understanding

what the role of the interaction between layers is in the

reorganization of the intra-layer structures. At this stage,

several quantifying parameters need to be introduced and

discussed. The first one is the classical time dependent or-

der parameter [22]

r(t) = 1

MN

∣∣∣∣∣
M∑

k=1

N∑
j=1

eiφk
j
(t)

∣∣∣∣∣, (5)

which actually measures the level of global synchroniza-

tion in the whole multilayer network.

In turn, the level of phase synchronization within a se-

lected layer l can be quantified as

rl(t) = 1

N

∣∣∣∣∣
N∑

j=1

eiφ l
j
(t)

∣∣∣∣∣, (6)

and, correspondingly, the degree of synchronization of the

different phasors’ components at each layer can be mea-

sured by averaging among all layers

rlayers(t) = 1

M

M∑
k=1

rk(t) = 1

MN

M∑
k=1

∣∣∣∣∣
N∑

j=1

eiφk
j
(t)

∣∣∣∣∣. (7)

Our first step is an extensive and careful numerical sim-

ulation of Eqs. (1) and (3) for inspecting how r and rlayers

depend on the inter- and intra- layer coupling strengths,

σ 1 and σ 2 respectively. A generic outcome is that, setting

an initial all-to all coupling configuration for all layers and
σ
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Fig. 1. Time averages of the global and layer synchronization indicators (a) r and (

space. Results refer to the asymptotic state (δ < 10−3, see main text for definitio

(with the requirement of Eq. (2) being satisfied), and random initial phases φ l
i

sel

to an average over 10 different initial conditions. The adaptation memory is T = 1
random initial conditions for the weights and for all the

components of the phasors, an asymptotic state emerges

spontaneously where all weights in the different layers

take well-defined values. Specifically, we assign all links an

initial (random) distribution of weights wl
i j

and phasors φl
i
.

Next, we let the whole network to evolve following Eq. (1)

during t1 = 500 time units, with all values of wl
i j

fixed at

their initial conditions. After t1, homophily and homeosta-

sis are activated and the system follows Eqs. (1)–(4) during

a time interval of t2 = 2, 000 time units. To guarantee that

this second transient time t2 is large enough for the

network topology to attain its asymptotic state (except for

negligible fluctuations) we calculate the quantity

δ = 1

M

M∑
l

√∑
i, j

[wl
i j
(t) − wl

i j
(t − 1)]2 (8)

and confirm that δ < 10−3 for all values of σ 1 and σ 2. Fi-

nally, all synchronization indicators are calculated along a

further sufficiently long time interval τ after the transient

t2. Specifically, we average the values of r and rlayers dur-

ing τ = 1, 000 time units and over Na = 10 independent

realizations, i.e.

r = 1

Naτ

Na∑
s=1

∫ t1+t2+τ

t1+t2

rs(t) dt,

rlayers = 1

Naτ

Na∑
s=1

∫ t1+t2+τ

t1+t2

rlayerss
(t) dt. (9)

Fig. 1 (a) and (b) report r and rlayers [calculated as spec-

ified in Eq. (9)] in the parameter space (σ 1, σ 2). As ex-

pected, the asymptotic value of r Fig. 1(a) depends on

a nontrivial combination of σ 1 and σ 2. On the contrary,

rlayers almost exclusively depends on σ 1 Fig. 1(b), as this

order parameter accounts for the synchronization inside

each layer. Nevertheless, it is worth noting the presence of
2
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Fig. 2. Non-equivalence parameter � of the layer link topologies in the

(σ 1, σ 2) parameter space. Local maxima are indicated as A, B and C (see

main text for details). Same stipulations as in the caption of Fig. 1. Each

reported value corresponds to an ensemble average over 10 different ini-

tial conditions.
several regions in the parameter space where the two pa-

rameters take remarkably different values. For instance, for

σ1 = 2.5 and σ2 = 0.004, rlayers (∼0.6) is almost doubling

the value of r (∼0.3), which indicates that the synchroniza-

tion of the phasors within each layer is greater that in the

whole multilayer network. The existence of moderate-to-

high values of the parameter r is the consequence of the

appearance of synchronized clusters, as already reported in

the case of monolayer networks [6,7]. These clusters col-

lapse into a unique large connected component when the

coupling σ 1 is further increased. Nevertheless, once the

multilayer structure is considered, the relation between r

and rlayers gives additional information: it is indeed possi-

ble that the synchronized clusters differ from layer to layer.

This is the case of moderate values of σ 1 and σ 2, which

allow the phases φl
i

of node i to evolve asynchronously

between them while, at the same time, synchronizing in

clusters at the different layers, thus leading to rlayers > r.

When instead both σ 1 and σ 2 take large enough values,

all phases within and between layers are in perfect syn-

chrony, and rlayers ∼ r.

The properties of the emergent dynamical state of the

systems constitute only one side of the self-organization

process. The fact that we are dealing with adaptive

weights, indeed, makes the topology of the layers to evolve

in time together with its own dynamics, up to reaching its

emergent, asymptotic, configuration. To monitor the differ-

ence in the distribution of weights at each layer, we calcu-

late the average of the difference of the weight coefficients

wl
i j

between layers as

�(t) = 1

M

M∑
l=1

N∑
i=1

N∑
j=1

∑
k �=l

∣∣wl
i j(t) − wk

i j(t)
∣∣. (10)

As in the case of the other parameters, � is averaged

over τ = 1, 000 time units (after the asymptotic state is

reached) and over Na = 10 independent realizations:

� = 1

Naτ

Na∑
s=1

∫ t1+t2+τ

t1+t2

�s(t) dt. (11)

Fig. 2 illustrates the dependence of the quantity � on

the coupling parameters σ 1 and σ 2. Dark regions corre-

spond to values of the parameter � close to zero, indi-

cating a perfect matching between the connection weights

wl
i j

of all layers, i.e., wl
i j

≈ ws
i j
, ∀l, s. Combining large values

of σ 1 and σ 2, indeed, leads to: (a) the same value of the

phases φi on all layers of the network [see Fig. 1(a)], i.e.,

φl
i
≈ φi, ∀l, and (b) the same topological structure for all

layers [Fig. 2]. In this regime, all layers end up with iden-

tical structure, the multilayer nature of the network is lost,

and the system behaves as an effective monolayer network.

Much more remarkably, there are certain regions of the

parameter space where � is consistently higher than zero.

Specifically, we identify three regions associated to three

local maxima in the (σ 1, σ 2) phase space: A (1.25, 0.002),

B (2.50, 0.004) and C (3.00, 0.01) [see Fig. 2 for details)].

For small values of the coupling strengths region sur-

rounding A in Fig. 2, the absence of correlation of the

weights is associated to synchronization parameters close

to zero, both within and between layers see Fig. 1. Within
this region, nodes’ phases φl
i

belonging to the same layer

are not synchronized and, as a consequence, synchronous

clusters of oscillators are not observed within layers nor

between layers.

In general, however, high values of � do not necessar-

ily indicate that the final topologies of the layers are dif-

ferent. In Fig. 3 we show the probability distributions of

the weights of the links after the adaptation process, for

three particular layers l = 1, 2, 3 (similar distributions, not

shown here, are obtained for the rest of the layers) and

for the different regions around the local maxima of �.

Fig. 3(a) shows the case where layers evolve independently

(i.e., σ2 = 0). We can observe that, despite there is no con-

nection between layers, all of them evolve to similar dis-

tributions of weights. Adaptive monolayer networks with

moderate couplings show similar weight distributions [7].

In Fig. 3(b) we plot instead the distributions obtained at

the local maximum A. Once again one sees that, despite

being uncorrelated (high �), the layers show again similar

weight distributions.

A second region of interest surrounds the local maxi-

mum of � at point B = (2.5, 0.004), and it is characterized

by sufficient difference between the value of rlayer (rlayer >

0.6) and the value of r (r < 0.45) Fig. 1. The dynamical

state of the system within this region is different from the

previous one, since now synchronous clusters of oscillators

start being formed at each layer, but, in general, these clus-

ters are distinct from layer to layer, as indicated by the

large value of �. Nevertheless, the averaged weight distri-

butions N(wl
i j
) for different layers Fig. 3(c) are still similar

to the ones of Fig. 3(b).

The third area of interest surrounds the local maximum

located at point C = (3.0, 0.01), and it is characterized

by relatively high values both of rlayer (rlayer ∼ 0.5) and

r (r ∼ 0.65). In this case, the phases of the oscillators

evolve close to (but not yet in) the fully synchronized

regime. Nevertheless, the fact that the oscillators are not
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Fig. 3. Log-log plots of the weight distributions N(wij) at layer 1 (first column), 2 (second column) and 3 (third column), for different choices of the

coupling parameters. Data obtained via Na = 50 realizations: (a) σ1 = 1.25, σ2 = 0.0 (layers evolve independently from each other in this case), (b) σ1 =
1.25, σ2 = 0.002 (point A in Fig. 2), (c) σ1 = 2.5, σ2 = 0.004 (point B in Fig. 2), (d) σ1 = 3.0, σ2 = 0.01 (point C in Fig. 2). All other stipulations as in the

caption of Fig. 1.
completely synchronized (since r < 1 and rlayers < 1) al-

lows the layers to have uncorrelated weights, as indicated

by � > 0. As in the previous regions, the cumulative dis-

tribution of weights N(wl
i j
) of the different layers Fig. 3(c)

do not differ substantially from layer to layer.

As an example to illustrate the impact of inter-layer

strength on the formation of different clusters among the

layers, we show in Fig. 4 the adjacency matrix of two lay-

ers for different inter-layer couplings (σ 2). In order to facil-

itate the identification of clusters inside each network we

sorted the node number by its value in the second small-

est eigenvector of the Laplacian matrix of the 1st layer

[25]. We can see that at low inter-layer strengths Fig. 4(a)

some of the communities at the layers are different. In fact,

the general community structure is similar, but a number

of nodes is assigned to different clusters, and some com-

munities merge. If we quantify the differences between

topologies using Eq. (10) for each pair of layers (instead
of the whole multilayer structure) we obtain �1,2 = 39.43.

Increasing of the value σ 2 Fig. 4(b) results in a reduction

of the difference between layer topologies (�1,2 = 21.52),

which can be observed directly at the adjacency matrices:

now only two communities differ sufficiently. Finally, a fur-

ther increase of σ 2 Fig. 4(c) leads to almost full overlap

between layers (�1,2 = 1.03), i.e. we obtain the same com-

munity structure inside each layer.

As a preliminary conclusion, we can affirm that dif-

ferent dynamical regimes lead to uncorrelated weights

from layer to layer but, surprisingly, to similar probabil-

ity distributions. This fact suggests that the cumulative

distributions reported here in Fig. 3 (and, for monolayer

networks, in Refs. [6,7]) are generic enough when home-

ostasis and homophily constrain the evolution of the

network structure.

Finally, we analyzed the spectral properties of the

emergent network, to discuss few dynamical properties of
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Fig. 4. Adjacency matrixes of 1st and 2nd layer, sorted by ranking of nodes at the 1st layer. Intra-layer coupling is σ1 = 1 for all cases (a—c) and inter-layer

coupling σ 2 is increased: (a) σ2 = 0.002, (b) σ2 = 0.006, (c) σ2 = 0.018. Quantitative differences between layer topologies (see definition in the text): (a)

�1,2 = 39.43, (b) �1,2 = 21.52, (b) �1,2 = 1.03. In all cases, the adaptation memory is T = 100.
its final topology. To that purpose, we consider the net-

work’s weighted supra-Laplacian matrix. For the case of a

monolayer network, the weighted Laplacian matrix is de-

fined as L = S − W, with W containing the weights of the

network’s links, and S being a diagonal matrix accounting

for the strength of each node, defined as sii = ∑
j wi j . In

our case, the supra-Laplacian matrix LM is a MN × MN

matrix defined as:

LM =

⎛
⎜⎜⎜⎝
L1 + MI −I . . . −I

−I L2 + MI . . . −I

...
...

. . .
...

−I −I . . . LM + MI

⎞
⎟⎟⎟⎠ (12)

Where each diagonal block Li accounts for the (N ×
N) Laplacian matrix of layer i, and I is the N × N iden-

tity matrix. We extract the set of eigenvalues of LM,

λ1 ≤ λ2 ≤ . . . ≤ λMN, and focus on how the smallest non-

zero eigenvalue λ (note that λ = 0, as LM is a zero-row
2 1
sum matrix) depends on the values of σ 1 and σ 2. From the

point of view of the structural properties of the network,

low values of λ2, also known as the algebraic connectivity

[26], are a signature of the modular structure of the net-

work: a value of λ2 close to zero indicates indeed that the

network is close to be broken into isolated modules [25].

The values of λ2 in the parameter space (σ 1, σ 2) are re-

ported in Fig. 5, and one can clearly distinguish two main

regions of interest: (a) a region where the values of λ2 are

low and remain almost constant (dark region of Fig. 5) and

(b) a region where λ2 increases with both σ 1 and σ 2 (col-

ored region of Fig. 5). This way, low to moderate values of

σ 1 and σ 2 lead, in turn, to low values of λ2 (dark region),

revealing that the final structure of the multiplex network

is close to be separated into isolated modules. On the con-

trary, high values of both σ 1 and σ 2 result in an increase

of λ2 but only when a certain threshold of both couplings

is crossed (σ 1 > 2.50 and σ 2 > 0.005).

It is worth remarking that λ2 gives insightful informa-

tion also for other dynamical processes such as diffusion
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Fig. 5. Smallest non-zero eigenvalue λ2 of the supra-Laplacian matrix (af-

ter the adaptation process is completed, see main text for details) as a

function of the parameter space (σ 1, σ 2). The value of λ2 is obtained af-

ter averaging over 10 independent realizations. [5]: the higher the value

of λ2, the lower the coupling strength required to achieve synchroniza-

tion.
[27] or synchronization [28]. Specifically, λ2 goes with the

inverse of the time to reach the equilibrium in a diffu-

sion process [27]. At the same time, when dealing with

identical dynamical systems that are diffusively coupled,

λ2 is related to the ability of a network to achieve com-

plete synchronization in the case of having class II sys-

tems (see [5] for a definition of class II systems and their

synchronization properties). Therefore, the dark region of

Fig. 5 is related to an organization of the network struc-

ture that would need long times to reach the equilibrium

of a diffusion process, at least longer than those associated

to the structures emerging within the colored region of the

same figure. At the same time, the structures emerging in-

side the dark region have worse synchronization properties

than those obtained within the coloured region. Comparing

these results with those of Fig. 2 we can observe that, de-

spite the combination of high values of σ 1 and σ 2 leads to

the highest λ2 (i.e., low diffusion time and high synchro-

nizability), there are intermediate values of both couplings,

such as those of point C, where a high λ2 co-exists with

two layers of different structures (see Fig. 2).

In summary, we have studied the emergence and

self-organization of multiplex adaptive networks in the

presence of homophilic and homeostasis processes. We

have used an extension of the Kuramoto model in order to

describe the evolution of oscillators whose dynamical state

is contained in a M-dimensional phasor. When inter- and

intra-layer coupling strengths are large enough, the system

fully synchronizes at all layers. Under these circumstances,

the final weight distribution of all layers is identical,

and the overall structure collapses in a single monolayer

network. At variance, the competition of the two adap-

tive mechanisms leads, for moderate coupling strengths,

to the formation of synchronous clusters that may be

either distinct or identical within the different layers.

Finally, inspection on the second smallest eigenvalue of
the supra-Laplacian matrix reveals the existence of certain

multilayer structures emerging at moderate inter- and

intra-layer coupling strengths which support shorter tran-

sient times to reach diffusion processes’ steady states and,

at the same time, a better synchronizability. This findings

expand the understanding of the impact of homophily

and homeostasis on the structure of multiplex networks

and could be related to other dynamical process such as

the improvement of information transfer [29,30]. Further

studies investigating how to translate our results to more

sophisticated models could give more insights about the

emergence of multilayer structures in real systems.
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