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a b s t r a c t 

We consider a neuronal network model where an external stimulus excites some neurons, which in turn 

activate other neurons in the network via synapse. We find that the regularity in macroscopic spiking 

activity of the whole neuronal network maximizes at a certain level of intrinsic noise. A similar resonant 

behavior, referred to as coherence resonance, is also observed with respect to the stimulus strength, net- 

work size, and number of stimulated neurons. The coherence is quantitatively estimated with the signal- 

to-noise ratio calculated from the average power spectra of the macroscopic signal and with autocorre- 

lation time. Overall synchronization in the neuronal network also exhibits a non-monotonic dependence 

on the network size. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

As all real systems, the neural systems are noisy. Among many

different sources of noise, the ones worth mentioning are quasi-

random release of neurotransmitters by synapses, random synap-

tic input from other neurons, and random switching of ion chan-

nels. Noise plays an advantageous role in the nervous system and

is needed for its good functionality in all levels of organization,

starting with cells and ending with the brain. Stochastic processes

in the brain may have different origins, such as, probabilistic ran-

dom spontaneous neural activity and random synaptic connections

[1] . Inherent brain noise plays an important advantageous role

in signal detection and decision-making by preventing deadlocks,

underlying important mechanisms of brain functionality and self-

organization [2–4] . 

In recent years, the effects of noise in neural systems have at-

tracted a lot of attention of neurophysiologists and physicists, es-

pecially due to its benefits, such as coherence and stochastic res-

onances [5–8,10] . In coherence resonance the regularity of a noisy

or a chaotic system maximizes at a certain value of a random

or a chaotic force. When the force is random, it is referred to as

stochastic coherence resonance [6,7,10] , while in a chaotic system it

is called deterministic coherence resonance [11–13] . Coherence reso-

nance can occur either in a bistable or an excitable system close to
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he excitation threshold. Stochastic resonance [5,8,14,15] is a partic-

lar case of coherence resonance when a periodic signal is present.

t is characterized by a maximum in the signal-to-noise ratio with

espect to noise or chaos intensity. Stochastic resonance is always

ccompanied by coherence resonance. 

In a notable paper [5] , Simonotto et al. showed that noise im-

roves perception when a visual stimulus is below the perception

hreshold. They interpreted this result as stochastic resonance in

 nervous system. Although this work stimulated further research

n this direction, including the present one, there are some uncer-

ainties in this interpretation. First of all, the perception stimulus is

ot periodic. Therefore, in fact they deal with coherence resonance,

ut not with stochastic resonance. Second, the darkness of the im-

ge background (or fog) is not noise, it is rather associated with

he perception threshold. So, you may ask: Where is the noise?

oise is in the brain. We may also suggest the brain adjusts in-

rinsic noise to increase signal-to-noise ratio while receiving a very

eak stimulus. However, this is only half of the story. 

In 2003, Toral et al. [10] found noise-induced coherence reso-

ance in a network of FitzHung–Nagumo oscillators. They showed

hat the network coherence maximized at a certain network size. A

imilar size-dependent resonance effect was previously observed in

n ensemble of coupled bistable noise-driven oscillators subjected

o a periodic force [8] . The authors of the above papers suggested

hat not only noise, but also the network size can be adjusted to

nhance the sensitivity of a neural system in signal recognition.

t is not yet clear how the brain adjusts network size. We may
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Fig. 1. Research design. The external stimulus with amplitude A is applied at time 

t s to excite Na neurons in the network of N neurons. The macroscopic signal is the 

time series averaged over all neurons in the network. 
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uppose that synaptic plasticity plays a key role in this process, or

he brain adjusts a number of excited neurons or a number of au-

apses. Autapse-induced coherence resonance was recently demon-

trated in a scale-free network of stochastic Hodgkin–Huxley neu-

ons [9] . 

In this paper, we focus in studying coherence phenomenon in a

etwork of globally coupled neural oscillators with randomly dis-

ributed coupling strengths under the influence of intrinsic noise.

n particular, we investigate how noise intensity, network size, and

he number of stimulated neurons affect the network regularity

coherence). As a basic model we choose the Rulkov map [16] .

e should note that map-based neuron models are highly effec-

ive for numerical simulations of neural dynamics and functional-

ty in neurobiological networks because they allow studying the

nteraction between individual neurons and mean field oscillations

ormed in large-scale networks. They can also be used for imple-

entation of biological neuronal mechanisms responsible for sig-

al processing of sensory information, such as visual, auditory and

actile, as well as for designing real-time synthetic neurobiological

ontrollers for biometric robots and neuronal prosthetic devices. 

Recently, the neuronal bursting activity was studied in a net-

ork of globally coupled Rulkov maps [17] . The authors of the

aper investigated the network synchronization by analyzing the

acroscopic signal of the whole network. Such an approach is very

onvenient when microscopic access to individual neurons is not

ossible, e.g., to simulate experiments with neural cultures grown

n a multielectrode matrix. The synchronized collective bursting

ctivity of many neurons has been shown to be associated with

ome pathological states, e.g., epilepsy [18] and migraine [19] . In

he present work, we use the same macroscopic approach to re-

eal the mechanisms responsible for the regularity of the collective

ursting dynamics or the network coherence. 

The coherence can be estimated using different approaches. The

ommon measures for the coherence used in previous papers were

he characteristic correlation time, normalized fluctuation of phase

uration (or jitter) [6,10] and signal-to-noise ratio (SNR) evaluated

rom power spectra [7,15,21] . Other measures, such as bifurcation

iagrams of peak amplitude and inter-spike intervals (ISI), normal-

zed standard deviation (NSD) of peak amplitude (amplitude coher-

nce) and NSD of ISI (time coherence), and Lyapunov exponents

ere also used [12,13] . In this paper we will apply different kinds

f analysis to measure the network coherence, in particular, time

eries analysis, spectral analysis and correlation analysis. We will

lso study synchronization in order to know whether or not it is

elated to the coherence. 

. The model 

Each Rulkov neuron [16] in noisy environment is described by

he following system of equations 

x n +1 = f (x n , x n −1 , y n + βn ) , 

y n +1 = y n − μ(x n + 1) + μσ + μσn + μA 

ξ ξn , 
(1) 

here x and y are fast and slow variables associated with mem-

rane potential and gating variables, respectively, α, σ and μ∈ (0,

] are parameters which regulate the system dynamics, ξ is Gaus-

ian noise with zero mean and unity standard deviation, A 

ξ is the

oise amplitude, and f is a piecewise function defined as 

f (x n , x n −1 , y n ) 

= 

{ 

α/ (1 − x n ) + y n , if x n ≤ 0 , 

α + y n , if 0 < x n < α + y n and x n −1 ≤ 0 , 

−1 , if x n ≥ α + y n or x n −1 > 0 , 

(2) 

onstructed in a way to reproduce different regimes of neuron-like

ctivity, such as spiking, bursting and silent regimes. Here, βn and
n are parameters related to external stimuli and defined as 

βn = βe I ext 
n + βsyn I syn 

n , 

σn = σ e I ext 
n + σ syn I syn 

n , 
(3) 

here βe and σ e are coefficients used to balance the effect of ex-

ernal current I ext 
n defined as 

 

exp 
n = 

{
0 , n < t s , 
A, n ≥ t s , 

(4) 

syn and σ syn are coefficients of chemical synaptic coupling [20] ,

nd I 
syn 
n is a synaptic current given as 

 

syn 
n +1 

= γ I syn 
n − g syn 

∗
{

(x post 
n −x rp ) / (1 + e −k (x post 

n −θ ) ) , when x pre 
n ≥ α+ y pre 

n + β pre 
n , 

0 , otherwise, 

(5) 

here g syn ≥ 0 is the strength of synaptic coupling, θ = −1 . 55

nd k = 50 are synaptic parameters which stand for the synaptic

hreshold behavior. The super indices pre and post refer, respec-

ively, to the presynaptic and postsynaptic variables, γ ∈ [0, 1] is

he synaptic relaxation time defining a portion of synaptic current

reserved in the next iteration, and x rp is a reversal potential de-

ermining the type of synapse, inhibitory or excitatory. The param-

ter values are chosen so that uncoupled neurons are in a resting

tate, namely, α = 3 . 65 , σ = 0 . 06 and μ = 0 . 0 0 05 . We also assume
e = 0 . 133 , σ e = 1 . 0 , βsyn = 0 . 1 , σ syn = 0 . 5 and x rp = 0 . 

The research design is shown in Fig. 1 . We consider a net-

ork of N globally coupled neurons with random coupling strength

 syn ∈ [0, 1] and relaxation time γ ∈ [0, 0.5]. 

Without external stimulation and in the absence of noise, all

eurons are in a silence regime. The external current in the form

f a rectangular pulse with amplitude A is applied to Na neurons

t time t s . This stimulation excites Na neurons, which in turn ex-

ite other neurons in the network. Since the coupling strength is

andom, some of the neurons fire in a periodic spiking regime,

ome in an irregular bursting regime, and some remain in a silent

tate. Here, we are interested in macroscopic dynamics represent-

ng the global network behavior. The macroscopic signal shown in

he right-hand panel of Fig. 1 exhibits the time series of the fast

ariable x averaged over all neurons in the network. 

. The analysis 

In this section we will show how regularity of the macroscopic

ignal depends on the number of stimulated neurons Na , the net-

ork size N , the amplitude of external stimulus A , and the ampli-

ude of noise A 

ξ . We will start with the time series analysis, and
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Fig. 2. (a-c,g-i) Time series of average membrane potential and (d–f,j–l) membrane potential of all neurons in the network of N = 100 neurons, when the stimulus with 

amplitude A = 1 is applied to (a,d) Na = 1 neuron, (b,e) Na = 10 neurons, and (c,f) Na = 30 neurons, under noise with amplitude A ξ = 0 . 1 , and when internal noise amplitude 

is (g,j) A ξ = 0 , (h,k) A ξ = 1 , and (i,l) A ξ = 2 for the case of 10 stimulated neurons. 

Fig. 3. (a) Signal-to-noise ratio (SNR) versus the number of stimulated neurons Na and (b–e) power spectra of average membrane potential for (b) Na = 2 , (c) Na = 11 , (d) 

Na = 21 , and (e) Na = 24 for A ξ = 0 . 1 , A = 1 , and N = 100 . 
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proceed to analysis of the power spectrum and self-correlation. Fi-

nally, we will study synchronization. 

3.1. Time series analysis 

In the Fig. 2 (a–c) we show the time series of the average mem-

brane potential 

x a v r = 

1 

N 

N ∑ 

i =1 

x i (6)

where i is an index of neuron, N = 100 is the number of neurons

in the network. In the 2 (d–f) panels we plot the time series of the

membrane potentials of all neurons in the network. One can see

that the vertical dark lines for Na = 10 (e) form a periodic struc-

ture, thus indicating regularity in the inter-spike intervals (ISI) in

contradistinction to cases of Na = 1 and Na = 30 when there is

only one group of spikes can be observed in the beginning of ex-

ternal stimulus appliance (d) or there are no grouping at all due to

neurons irregularly spiking. Similar results were obtained for the

network of 50 neurons. 

The effect of noise is illustrated in Fig. 2 (g–l). One can see that

increasing noise amplitude leads to decreasing regularity. Averaged

signal starts to be more noise, each neuron herewith starts spiking
haoticly. But one still can see groups in the signal but they are

rregular now. We should note that this is true only for this set

f parameters. As distinct from the previous case, the macroscopic

ignals shown Fig. 2 (h,i,k,l) represent spiking dynamics before the

timulus is applied, i.e. for n < 10 0 0. The spiking behavior without

xternal stimulation is induced by the relatively strong noise. 

.2. Power spectrum analysis 

Next, we will study coherence using the signal-to-noise ratio

SNR) derived from the power spectrum. In the upper panels of

ig. 3 we show the power spectra of the average membrane po-

ential x avr of all neurons in the network. The maximum power

n the spectrum P max appears at the average frequency of spiking

eurons f s . Therefore, this spectral component reflects the contri-

ution of a regular behavior, while the noise contributes mainly to

he background component P N at the same frequency f s [7,21,22] .

he signal-to-noise ratio can be calculated from the power spectra

s SNR = P max − P N (dB) at the dominant frequency f s . 

The dependence of SNR on the number of stimulated neurons is

hown in the lower panel of Fig. 3 . One can see that with increas-

ng Na , SNR first increases rapidly for small values of Na reach-

ng the maximum value for Na ∈ [6, 11], and then gradually de-

reases to 0. This means that the network coherence has a reso-
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Fig. 4. (a) Signal-noise ratio (SNR) versus network size N for A ξ = 0 . 1 , A = 1 , Na = 10 and (b–e) power spectra for (b) N = 30 , (c) N = 55 , (d) N = 120 , and (e) N = 180 . 

Fig. 5. Signal-to-noise ratio (SNR) in the parameter space of stimulus A and noise 

A ξ amplitudes. The SNR value is represented by the color scheme shown in the 

right panel. 
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ant character with respect to the number of stimulated neurons.

e can also note that increasing the number of stimulated neu-

ons leads to slowly increasing the main frequency. As one can see

rom power spectra for Na = 2 and Na = 21 , when SNR = 20 noise

ackground is high and maximum power is not so big. But for the

esonance maximum we have a high peak at the main frequency

nd low noise. And for big values of number of stimulated neurons

oth P max and P N are very small. 

In Fig. 4 , where we plot the dependence of the SNR on the

umber of neurons in the network one can see as N is increased,

he SNR gradually increases too, reaching the maximum for the

etwork size near 120, and then the SNR almost doesn’t change for

arger networks. Simultaneously, the dominant frequency decreases

ISI increases), as one can see from the power spectra in the up-

er panels. At the same time, the maximum power at the main

requency are also increasing while background noise remains the

ame. Also we can note that increasing network size leads to in-

reasing number of harmonics and subharmonics in power spectra.

In Fig. 5 we show the dependence of SNR on the stimulus A and

oise A 

ξ amplitudes, on which one can see the existence of vari-
us coherence resonances (dark regions) in the parameter space.

f we fix value of A 

ξ in the range from 0 to 2.3 and increase A

rom 0 to 3, we observe a resonant phenomenon when SNR is in-

reasing at the beginning, reaching the maximum, then decreasing

or some value and staying the same in the end. Also we should

ote that this phenomenon of SNR being the same for A > 1.75 is

rue for all observed values of noise. On the other hand, increasing

oise amplitude when stimulus amplitude is fixed, can give the al-

ernation of maxima and minima for A > 0.5. We should note that

or A 

ξ > 2.3 and A < 0.5 there is no resonance. Thus, in the range

.8 < A < 1.75 we observe three main areas of coherent resonance:

 < A 

ξ < 0.3, 0.45 < A 

ξ < 0.7, and 0.9 < A 

ξ < 1.2. 

.3. Correlation analysis 

Following the approach proposed by Pikovsky and Kurths [6] ,

e characterized the coherence by the correlation time defined as

c = 

T ∑ 

n 0 

C(τ ) 2 , (7) 

here n 0 is the number of iterations corresponding to transients,

 is the total number of iterations in time series, C ( τ ) is the auto-

orrelation function given as 

(τ ) = 

〈
( x a v r (n ) − 〈 x a v r 〉 ) ( x a v r ( n + τ ) − 〈 x arv 〉 ) 

〉
〈
( x a v r ( n ) − 〈 x a v r 〉 ) 2 

〉 , (8) 

here 〈 . . . 〉 is the time average after transients. The larger the cor-

elation time, the better the coherence. 

In Figs. 6 we plot the dependence of natural logarithm of cor-

elation time on the number of stimulated neurons Na , network

ize N , stimulus amplitude A and noise amplitude A 

ξ . The areas

ith higher coherence are clearly distinguished in the diagrams.

n Fig. 6 (a) one can the same dependencies from Na and N as on

igs. 3 and 4 . From Fig. 6 (a) we can definitely say that there is

esonance with respect to the number of stimulated neurons and

o the network size. On the Fig. 6 (b) one can see complex depen-

ence on which small white curves of maximum values of char-

cteristic correlation time are exist in the are of 0.5 < A < 1.25 and

.2 < A 

ξ < 1.0. This area of parameters value is similar to the one

rom Fig. 5 observed before. 
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Fig. 6. Two-parameter diagram of natural logarithm of characteristic correlation time in the space of (a) network size N and number of stimulated neurons Na for A ξ = 0 . 1 

and A = 1 and (b) stimulus A and noise A ξ amplitudes for N = 100 and Na = 10 . 

Fig. 7. Synchronization index in two-parameter space of (a) network size and the number of stimulated neurons for A = 1 and A ξ = 0 . 1 and (b) stimulus and noise amplitudes 

for N = 100 and Na = 10 . 
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3.4. Synchronization 

The above analysis of the network coherence can raise the

question: Is the improving coherence associated with enhancing

synchronization? To answer this interesting question we calculate

the network synchronization index as follows [23,24] 

Ξ = 

√ 

1 

T − n 0 

T ∑ 

n = n 0 +1 

ξn , (9)

where ξ n is the standard deviation given as 

ξn = 

1 

N 

N ∑ 

i =1 

(
x (i ) 

n 

)2 −
( 

1 

N 

N ∑ 

i =1 

x (i ) 
n 

) 2 

. (10)

The smaller Ξ, the better the synchronization; Ξ = 0 means com-

plete synchronization. 

The dependence of the synchronization index on the control pa-

rameters is shown in Fig. 7 . 

The comparison of the synchronization diagrams with the co-

herence diagrams does not reveal notable correlation. The ex-

tremum in the synchronization index is only observed with re-

spect to the network size. Indeed, as one can see from Figs. 7 (a),

synchronization is enhanced for N = 120 that coincides with the

maximum in the SNR in Fig. 4 . However, no resonances are de-

tected with respect to other control parameters. Such incoinci-

dence can be explained by the fact that the synchronization index

given by Eq. (9) is valid only for the estimation of synchronization
n systems with a single time scale. Although the neuronal net-

ork can have two time scales corresponding to spiking and burst-

ng dynamics. In our network, the neurons can be synchronized by

ursts, but not by spikes. Furthermore, the neurons with irregular

chaotic) dynamics can be well synchronized, while the network

oherence is very low due to irregular oscillations. Therefore, bet-

er synchronization means better coherence only if all neurons in

he network are in a regular spiking regime. 

. Conclusion 

We have shown that regularity in the collective spiking be-

aviour of a neuronal network maximizes at a certain level of

ntrinsic noise, external stimulus, network size, and the number

f stimulated neurons. This coherence resonance phenomenon has

een found in the signal-to-noise ratio, calculated from the aver-

ge power spectra of the neuronal network, and in the correlation

ime. 

By studying network synchronization we found that overall syn-

hronization of the neurons became worse as noise, or amplitude

f external stimulus, or the number of stimulated neurons is in-

reased. A non-monotonic dependence of synchronization has only

een observed with respect to the network size. The difference

etween uncorrelated behavior in the coherence and synchroniza-

ion can be explained by the existence of two different time scales

n neural dynamics, spiking and bursting. Being synchronous by

ursts, the neurons can be asynchronous by spikes. Therefore, over-

ll synchronization does not reflect the network coherence. 
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[

We believe that our results will stimulate further research in

his direction. Since the signal-to-noise ratio can be improved by

djusting the network size, intrinsic noise, and the number of

timulated neurons, the answer to the question: Does the brain

ork in coherence resonance to detect a weak stimulus? can be

ositive. In order to check this hypothesis, specific neurophysio-

ogical experiments are required. These experiments can be de-

igned using the approach proposed in our paper, for example,

y studying a macroscopic signal in a neural culture grown in a

ulti-electrode matrix or by estimating brain noise from electro-

r magneto-encephalographic data [4] . 
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