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Abstract Identification of brain activity associated
with motor execution and, more importantly, with
motor imagery is necessary for the development of
brain–computer interfaces. Most of recent studies were
performed with trained participants which demon-
strated that the motor-related brain activity can be
detected from the analysis of multichannel electroen-
cephalograms (EEG). For untrained subjects, this task
is less studied, but at the same time much more chal-
lenging. This task can be solved using the methods of
nonlinear dynamics, allowing to extract specific fea-
tures of the neuronal network of the brain (e.g., the
degree of complexity of EEG signals and degree of
interaction between different brain areas). In this work,
we analyze the spatio-temporal and time–frequency
characteristics of the electrical brain activity, associ-
ated with both the motor execution and imagery in
a group of untrained subjects, by applying different
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methods of nonlinear dynamics. At the first stage, we
apply multifractal formalism to the analysis of EEG
signals to reveal the brain areas which demonstrate the
most significant distinctions between realmotor actions
and imaginary movement. Then, using time–frequency
wavelet-based analysis of the EEG activity, we analyze
in detail the structure of considered brain areas. As a
result, we distinguish characteristic oscillatory patterns
which occur in different areas of brain and interact with
each other when the motor execution (or imagination)
takes place. Finally, we create an algorithm allowing
online detection of the observed patterns and experi-
mentally verify its efficiency.

Keywords Motor action · Motor imaginary · Wavelet
analysis · Multifractal analysis · Event-related
synchronization · Empirical mode decomposition ·
EEG · Hölder exponent

1 Introduction

The brain–computer interface (BCI) is an exciting topic
of neuroscience, physics and engineering. Such mod-
ern technology is in demand in various applied fields,
includingmedicine, industry and others [1–6]. TheBCI
is known to be based on real-time detection of charac-
teristic forms of electrical (or magnetic) activity of the
brain and the transformation of the obtained informa-
tion into computer commands for controlling hardware.
At present, the developed neurointerfaces allow one to
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control the 2-Dmovement of a cursor [7], partially syn-
thesize speech [8] and control simplest movements [9].
TheBCIs can be effectively used for rehabilitation [10],
controlling exoskeletons [1] and robots [11].

The BCIs use both noninvasive or invasive meth-
ods for recording the brain electrical activity and then
transform it into user’s control commands [12,13]. It
was initially assumed that only invasive BCIs, which
use electrodes implanted in the brain, can provide mul-
tidimensional movement control of a robotic arm or
a neuroprosthesis [14–16]. At the same time, noninva-
sive BCIs are shown to be prospective devices for basic
communication and control [7,17]. Noninvasive BCIs
are based on the online analysis and extraction of the
features of multichannel recordings of electrical brain
activity (EEG), which is the powerful tool for study of
the brain activity [18]. It allows to estimate the degree
of the involvement of neural ensembles in generation
of different rhythms and the interactions between neu-
rons belonging to different brain structures [19,20].
The BCI operation is largely determined by the pos-
sibility of generating human stable and reproducible
patterns of cognitive activity, which then can be trans-
lated for control commands. In this context, the most
promising approach is the use of imagination of motor
activity [21].

There are plenty of techniques for analyzing neu-
rophysiological features of motor imaginary with the
aim of their transformation into commands for control-
ling computer systems. For this purpose, one can use
the methods based on the registration of event-related
potentials [22], methods of machine learning and arti-
ficial intelligence [23,24], techniques for isolating the
time–frequency structure of the signals [25] and meth-
ods for restoring connections between different brain
areas using multichannel data [19,26]. At the same
time, these techniques demonstrate positive results for
trained subjects. Wolpaw and McFarland showed that
their participants were able to move a cursor with two-
dimensional control after several sessions of training
[27]. In [28], the effects of motor imagery on μ/α- (8–
12Hz) andβ- (18–25Hz) rhythm activitywere studied,
compared to those of actual movement.

For untrained subjects, the BCI is the more chal-
lenging task, however, less studied [29]. Existing
motor imagery classification algorithms being applied
to untrained participants do not always achieve good
performances because of the noisy and nonstationary
nature of the EEG signals and inter-subject variabil-

ity [30]. We expect that this problem may be solved
by using approaches of nonlinear dynamics, which
were successfully applied in neurodynamics, includ-
ing neuronal signal processing [31]. In particular, such
techniques were used to measure entropy of biological
signals [32], reveal features of neural synchronization
[33], quantify power-law statistics of EEG signals [34],
estimate EEG complexity based on fractal dimension
[35], etc.

In this paper, we analyze spatio-temporal and time–
frequency characteristics of electrical brain activity
associated with real and imaginary motor actions in the
group of untrained subjects, using different methods of
nonlinear dynamics. At the first stage, we apply multi-
fractal formalism to the analysis of EEG data to reveal
brain areas demonstrating the most significant differ-
ences between real motor actions and imaginary move-
ment. Then, using time–frequency analysis we study
in detail the structure of the considered brain areas
with the aim to reveal characteristic oscillatory pat-
terns, which occur in different brain areas and interact
with each other when themotor action (or imagination)
takes place. Finally, we propose an automatic algo-
rithm, which allows online detection of the observed
patterns, and experimentally verify its efficiency.

2 Materials and methods

2.1 Subjects and recordings

Twelve healthy volunteers including both males and
females, between the ages of 20 and 43, participated in
the experiments. All of them signed a written consent.
The experimental studies were performed in accor-
dance with the Declaration of Helsinki and approved
by the local research Ethics Committee of the Yurij
Gagarin State Technical University of Saratov.

The multichannel EEG was recorded at 250 Hz
sampling rate from P = 19 electrodes with two ref-
erence electrodes placed at the standard positions of
the 10–20 international system [36]. To register EEG
data, we used cup adhesive Ag/AgCl electrodes placed
on “TIEN–20” paste. Immediately before the exper-
iment start, all the necessary procedures to increase
the conductivity of the skin and reduce its resistance
were carried out with the use of abrasive “NuPrep”
gel. The impedances were monitored when the elec-
trodes were installed and measured during experi-
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ments. Usually, the impedance values varied within
2 ÷ 5k�. The ground electrode N was located above
the forehead and two reference electrodes A1,2 were
located on mastoids. The EEG signals were filtered by
a band-pass filter with cutoff points at 1 Hz (HP) and
100 Hz (LP) and a 50-Hz notch filter. The electroen-
cephalograph “Encephalan–EEGR–19/26” (Taganrog,
Russian Federation) with multiple EEG channels was
used for amplification and analog-to-digital conversion
of the EEG signals. In addition to 10–20 electrode sys-
tem, the signals from frontal electrode Fpz and occip-
ital electrode Oz were used. Electroencephalograph
“Encephalan–EEG–19/26” possesses the registration
certificate of the Russian Federation Federal Service
for Supervision in Health Care No. FCP 2007/00124
of 07.11.2014 and the European Certificate CE538571
of the British Standards Institute (BSI).

2.2 Experimental procedure

The experimental procedure is schematically illus-
trated in Fig. 1. Each of twelve participants was sub-
jected to one experiment, lasting approximately 30min.
During the experiment a volunteer was instructed to
perform two types of tasks: to lift slowly the right
hand (in the shoulder joint) (RAM) and imagine such a
movement during a given time interval (IAM) (Fig. 1a).
The whole experiment was split into 10 sessions, 5 ses-
sions (RE j ) of real movements and 5 imaginary move-
ments (IM j ). Each RE session followed by a IM ses-
sion. The experiment started with a 5-min background
EEG recording (BCG1) and ended with a 5-min back-
ground recording (BCG2) (Fig. 1b). Each session was
preceded by a short visual message with instructions
and contained M = 20 identical events. Each event
in the session was preceded by a short sound message
and should be performedwithin a reserved time interval
�t = 4 s (Fig. 1c). The experiments were carried out
during the first half of the day at a specially equipped
laboratory where the volunteer was siting comfortably
and effects of external stimuli, e.g., external noise and
bright light, were minimized.

2.3 Signal analysis

Wavelet transform modulus maxima (WTMM) The
WTMM method proposed by Muzy et al. [37] was

(a)
Real Arm Movement
(RAM)

Imaginary Arm Movement
(IAM)

BCG1 BCG2RE1 IM1 RE2 IM2 REN IMN

(b)

instruction

instruction

sound

sound

sound

sound

sound

sound

RAM1 RAM2 RAMM

IAM1 IAM2 ISMM

Δt

Δt

Fig. 1 Experimental design. a Two types of tasks: (left) real
movement of the right arm (RAM) and (right) imaginary move-
ment of the right arm (IAM). b The structure of experimental
sessions: RAMi and IAMi (i = 1, M being the number of indi-
vidual event in the session) define a single real and imaginary
movement, respectively. M = 20 is the total number of events
in the session, �t = 4 s is the time interval reserved for the task.
Each session is preceded by a video message with instructions
and each event in the session is preceded by an audio message.
RE j and IM j ( j = 1, N being the session number) correspond
to the sessions in which the real and imaginary movements take
place, respectively; N = 5 is the total number of sessions, asso-
ciated with each type of movement. The experiment starts with a
5-min backgroundEEG recording (BCG1) and endswith a 5-min
background recording (BCG2)

applied to estimate the complexity of the EEG signals.
This method is now widely used to describe complex
scaling phenomena in nonstationary time series [38].
It gives the singularity spectrum of a signal x(t) based
on the continuous wavelet transform

W (a, τ ) = 1

a

∫ ∞

−∞
x(t)ψ

(
t − τ

a

)
dt (1)

with parameters a and τ characterizing the scale and
translation of wavelet function ψ . In the multifractal
analysis, real-valued wavelets are mainly used, such as
the MHAT function
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ψ(t) = (1 − t2) exp

(
− t2

2

)
. (2)

Near the singularity point t∗, the power-law depen-
dence of the wavelet coefficients

W (a, t∗) ∼ ah(t∗) (3)

takes place with the Hölder exponent h. The value of h
characterizes the strength of the singularity and varies
along the signal x(t). In order to provide a statistical
analysis of singularities, the approach based on the par-
tition functions ismainly applied. It assumes the extrac-
tion of all skeleton lines (the lines of local maxima of
|W (a, t)|) and the construction of the functions

Z(q, a) =
∑

l∈L(a)

(
sup
a′≤a

|W (a′, tl(a′))|
)q

∼ aτ(q) (4)

with L(a) being a full set of skeleton lines at the scale
a, tl(a) being the position of the maximum related to
the line l and τ(q) being the scaling exponents.

The values τ(q) can be found by the analysis of the
dependence (4) in the double-logarithmic plot. After
their estimation, the Hölder exponents h(q) and the
singularity spectrum D(h) are obtained as

h(q) = rmdτ(q)

rmdq
, (5)

D(h) = qh − τ(q). (6)

The function D(h) is theHausdorff dimension D of sin-
gularity points characterized by the exponent h(t) = h.
The position of the singularity spectrum is determined
by the mean Hölder exponent H = h(0), while the
width of the singularity spectrum quantifies the degree
of inhomogeneity of the analyzed data. It is often used
as a complexity measure of nonstationary processes.

WTMM combines complexity analysis and correla-
tion analysis representing a powerful tool for studying
nonstationary and inhomogeneous processes. Appli-
cation of wavelet transform at the first stage of the
method allows ignoring polynomial trends presented
in the analyzed data. As a result, there is no need to
preprocess a experimental EEG data before applying
the WTMM method. When computing the singular-
ity spectrum D(h), two main measures are considered:
the width of this spectrum characterizing the degree
of inhomogeneity (complexity) of data and the mean
Hölder exponent H reflecting correlation properties.

The performed analysis has revealed main distinctions
in the second quantity. It should be noted that WTMM
provides a faster convergence of estimated quantities as
compared with the standard correlation analysis and,
therefore, a better characterization of complex pro-
cesses based on short data sets. The latter enables an
improved quality of separation between different phys-
iological states for limited amounts of physiological
data [39,40].
Time–frequency analysis is based on the continu-
ous wavelet transformation (1) where complex-valued
Morlet wavelet was chosen as the mother function

ψ(η) = π−1/4eiω0ηe−η2/2, (7)

withω0 = 2π being the central frequency of theMorlet
and i = √−1.

The wavelet energy spectrum E(t, f ) = W 2(t, f )
was calculated in the frequency band f ∈ [1, 30] Hz
( f = 1/a). For each EEG channel, the values of
whole wavelet energy ERE, EIM, EBCG associated
with motor execution, motor imaginary and back-
ground EEG, respectively, were calculated by aver-
aging E(t, f ) indicated frequency band and over the
experimental sessions (RE), (IM) and (BCG)

ERE
IM
BCG

=
∫

t ∈ RE
t ∈ IM
t ∈ BCG

⎡
⎣

30Hz∫

1Hz

E(t ′, f ′)d f ′
⎤
⎦ dt ′. (8)

In the frequency ranges of δ-band (1–5 Hz), μ/α-band
(8–13 Hz) and β-band (10–30 Hz), the energy values
Eδ(t), Eμ(t) and Eβ(t) were calculated for each EEG
channel by averaging the value E(t, f ) over the corre-
sponding frequency band

Eμ,β,δ(t) =
∫

f ∈ μ − band
f ∈ β − band
f ∈ δ − band

E(t, f ′)d f ′. (9)

Empirical mode decomposition (EMD) [41] was used
to extract the low-frequency trend from the tempo-
ral evolution of the spectral energy. This very recent
method of time–frequency analysis of complex non-
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linear and nonstationary signals is a promising tool for
studying experimental EEG signals, already demon-
strated its efficiency [42,43]. One of the most impor-
tant advantages of EMD is that the basic functions are
not predetermined, like in Fourier or wavelet analysis;
they are derived from the analyzed signal itself highly
dependent on the structure of the initial signal. This
feature makes the EMD very convenient and highly
adaptive for signal analysis.

The EMD method allows the decomposition of
the initial signal (for example, EEG) into a sum of
amplitude-modulated components with a zero mean
value referred to as empirical modes (EM). Algorithm
of EMD for some signal x(t) includes the following
steps:

1. Finding all extrema (minima andmaxima) on signal
x(t)

2. Interpolation of signal between minima and max-
ima and construction of two envelopes: emin(t) and
emax(t)

3. Calculation of low-frequency component of signal
(trend) m(t):

m(t) = emin(t) + emax(t)

2
(10)

4. Extraction of high-frequency component of signal
(empirical mode) d(t):

d(t) = x(t) − m(t) (11)

5. Reiteration of steps 1–4 for trend m(t) for calcula-
tion of subsequent empirical mode.

Steps 1–4 of the EMD algorithm allow to calculate
the first EM. In order to calculate the second, third,
and subsequent EMs, all steps must be repeated for,
respectively, first, second, etc., trends m(t) [instead of
the initial signal x(t)] [43].

Example of EMD for EEG signal x(t) is illustrated
on Fig. 2. Figure 2 contains short fragment of the ini-
tial EEG signal x(t) and first four EMs, calculated for
this fragment. Each of the EMs is characterized by its
own frequency range, total number of EMs and their
frequency ranges are highly dependent on the initial
signal. The first EM has the highest frequency, and the
latter becomes lower with the growing number of the
EM. Frequency ranges of different EMs mostly corre-
spond to different oscillatory patterns on the signal. In

EM4

EM3

EM2

EM1

0.5 sec

x(t)

Fig. 2 Example of empirical mode decomposition for typical
EEG signal x(t) registered by the Cz channel

order to extract the desired low-frequency trend from
the signal x(t), one must consider the EM with lowest
frequency.

3 Results of off-line signal analysis

3.1 Multifractal analysis

The experimental results were analyzed using the mul-
tifractal analysis. Mean Hölder exponents were calcu-
lated for each 4-s EEG trial, associated with motor exe-
cution HRE and motor imaginary HIM. The obtained
values were then averaged over 100 EEG trials, and
mean values HRE and H IM were used to character-
ize real and imaginary movements. The background
activity was analyzed by averaging the mean Hölder
exponent HBCG over the 5-min background EEG
(BCG1), preceding themotor-related experimental ses-
sions (Fig. 1 b).

The performed estimations of the singularity spec-
tra revealed significant distinctions between real and
imaginary hand movements reflected in the position of
D(h), i.e., in the mean Hölder exponent H illustrated
in Fig. 3.

The graphs in panel (a) show the values of the mean
Hölder exponents related to real (RE) and imaginary
(IM) movements of the right arm, estimated from the
EEG channel Cz for all subjects and averaged over a
large number (N = 100) of events. The error bars indi-
cate the standard error, which quantifies the deviation
of the mean Hölder exponent within individual events.
One can see that despite essential intra-group variabil-
ity, an increase in H for real movements was observed
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Fig. 3 a Mean Hölder
exponents related to real
(RE) and imaginary (IM)
movements of the right arm,
estimated from EEG
channel “Cz” for all
subjects. b Hölder
exponents related to real
(RE) and imaginary (IM)
movements and background
EEG (BCG) calculated from
EEG channels Cz and C3
and averaged over all
subjects. All data are shown
as mean ± SE
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for all subjects. Similar results were obtained while
considering other EEG channels. Thus, the performed
multifractal analysis allowed us to distinguish between
real and imaginary arm movements independently of
the selected EEG channel.

Along with the distinctions between motor execu-
tion and motor imaginary, the possibility to extract the
brain state associated with both ME and MI from the
background EEG is also of great interest. For this pur-
pose, we considered differences in the mean Hölder
exponents corresponding to motor execution HRE,
motor imaginary H IM and background EEG HBCG.
We found that the difference between motor execution
and background EEG activity was well pronounced in
all channels, while the distinction between background
EEG and motor imaginary depended on the electrode
position. As an example, in Fig. 3b we plot the val-
ues of the mean Hölder exponents related to real (RE)
and imaginary (IM) movements and background EEG
(BCG) calculated from EEG channels Cz and C3 (the
data are averaged over all subjects and the bars define
the standard error). One can see that for the Cz channel,

the mean Hölder exponent increased for motor execu-
tion and decreased for motor imaginary. The statistical
analysis based on paired t test showed that both these
changes were judged as significant (p < 0.05). At the
same time, the mean Hölder exponent calculated from
the C3 channel demonstrated significant (p < 0.05)
changes for motor execution, but changes in H -values
between background EEG and motor imaginary were
found to be insignificant (p = 0.12). Thus, according
to Fig. 3b imaginary movements of all subjects can be
effectively classified from background EEG based on
the Hölder exponents calculated from the Cz channel,
while the difference between imaginary movements
and background EEG extracted the C3 channel was
insignificant.

In Fig. 3c, we illustrate the differences between
the mean Hölder exponents corresponding to real/
imaginary movement and background EEG calculated
from each EEG channel, distributed over the brain sur-
face in accordance with electrode positions and aver-
aged over all subjects. The results provide the evidence
that the most significant differences between ME and

123



Nonlinear analysis of brain activity 2809

background EEG and between MI and background
EEG in untrained subjects took place in the frontal
brain area. Motor execution resulted in a significant
increase in the mean Hölder exponents calculated from
EEG channels located in the frontal brain area, whereas
motor imaginary led to a decrease in H -values.

The obtained results revealed a significant influence
of the frontal brain areas on themeanHölder exponents
calculated for the EEG segment associated with motor
execution and motor imaginary. At the same time, the
analysis of the EEG data from other brain areas, e.g.,
temporal lobe and central lobe, did not reveal any
changes in the Hölder exponents. This allowed us to
conclude that these areas did not play a significant
role in generation of motor-related brain rhythms. This
is a surprising result, because many previous papers
reported the involvement of these brain structures in
motor activity [44,45].

The observed behavior of the Hölder exponents can
be explained by the complex interaction between dif-
ferent oscillatory patterns in these brain areas. In order
to clarify the nature of such interactions, we performed
the time–frequency analysis.

3.2 Time–frequency analysis

The time–frequency analysis was based on the continu-
ouswavelet decomposition. In this case, unlike the esti-
mation of a singularity spectrum, the complex-valued
Morlet wavelet (7) was used instead of the real MHAT
function (2). Thewavelet energy spectrumW ( f, t)was
calculatedwithin the frequency band f ∈ [1, 30]Hz. In
the first stage, the values of energy associated with real
(Ei

RE), imaginary (Ei
IM) movements and background

EEG (Ei
BCG) were calculated for each EEG trial (each

4 s length) and averaged over 100 trials. The obtained
values were then averaged over the whole frequency
band f ∈ [1, 30] Hz. As the result, the set of val-
ues (ERE, EIM, EBCG) characterizing the energy of
the electrical brain activity of each subject during real
and imaginary movements and background EEG was
obtained from every EEG channel (8).

In the first stage, the differences between motor exe-
cution/imaginary and background EEG were judged
based on the calculation of the coefficients 〈ERE−
EBCG〉, 〈EIM−EBCG〉, 〈ERE−EIM〉 describing the
change of the whole spectral energy associated with
the considered states. These values were calculated for

each EEG channel and averaged over the group of par-
ticipants.

Figure 4displays the revealeddifferences distributed
over the brain surface. One can see that compared to
background EEG, real movements were characterized
by an increase in the energy over the most of the EEG
channels (Fig. 4a). Imaginary movements, on the con-
trary, resulted in a decrease in the energy in the corre-
sponding brain areas (Fig. 4b). In particular, real move-
ments were associated with a significant increase in the
energy in frontal and temporal lobes, whereas imagi-
nary movements with a decrease in the energy in the
same lobes. As the result, real and imaginary move-
ments in untrained subjects can be effectively distin-
guished by analyzing frontal and temporal EEG sig-
nals. These results of energy analysis correlated with
the behavior of the Hölder exponents (Fig. 3b).

As we already mentioned above, it is surprising that
according to the Hölder exponents and the whole spec-
tral energy, the neural structures of parietal and central
lobes were not involved in real and imaginary move-
ments. In order to deeply understand the role of parietal
and central lobes in the considered types of activity, the
detailed time–frequency structure of EEG signal was
analyzed.

In Fig. 5, we present the time–frequency dependen-
cies which illustrate the changes in the value of wavelet
energy E( f, t), f ∈ (1, 30) Hz, t ∈ (0, 4) s associated
with (a) real and (b) imaginarymovements with respect
to the background EEG. Presented data were averaged
over 100 EEG trials recorded from all 21 EEG channels
of one subject. The time–frequency plots are labeled
and located on the head-like layout, according to the
position of the recording electrodes. Red and blue col-
ors indicate time–frequency plane for which the energy
value respectively increased and decreased during real
or imaginary movement. Color saturation shows the
degree of changes.

One can see that a significant increase for real move-
ment and a significant decrease for imaginary move-
ments of wavelet energy in frontal and temporal lobes
weremainly determined by the low-frequency (1–5Hz)
δ-waves. The energy of δ-waves exhibited a significant
change in frontal area, which decreased rapidly while
moving from frontal to parietal lobe. This resulted in
a significant change in wavelet energy. At the same
time, the time–frequency structure of EEG signal was
muchmore complicated. The features of real and imag-
inary movements were characterized by the transition
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and distribution of the energy between different fre-
quency bands. Considering real movement (Fig. 5a),
one can see that electrical activity in temporal lobe
together with an increase in δ-waves’ amplitude was
characterized by a decrease in the wavelet energy for
f ∈ [8, 12] Hz (μ-rhythm) and decreasing energy in
f ∈ [15, 30] Hz (β-activity). This effect is known in
the scientific literature as event-related desynchroniza-

tion (ERD) [46]. The ERD associated withmotor activ-
ity was previously observed in the frequency bands of
8–10, 10–12, 12–20 and 20–30Hz [47]. It is known
that motor execution is characterized by both event-
related desynchronization and event-related synchro-
nization (ERS). The ERD was usually observed in α

(or μ) and β-bands [48], while such effect in δ-band
wasmuch less studied [49].At the same time, according
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to Fig. 5a, event-related synchronization of δ-activity
took place during motor execution together with event-
related desynchronization of μ/α)- and β-rhythms.

In Fig. 5a, the colored areas A and B indicate
the brain segments where the considered event-related
behavior was the most pronounced. One can see that
the observed ERD in μ-rhythm prevailed in temporal,
central and parietal lobes (colored area A), where the
motor area took place [50]. It should be noted that this
area is shifted from the center to the left side, which
is connected with hemispheric asymmetry, associated
with arm movements [51]. An accompanying event-
related increase in the amplitude of the low-frequency
δ-activity wasmore pronounced in frontal lobe (shaded
area B).

Motor imaginary, in turn, was also associated with
significant changes in δ-activity, which can be observed
in frontal area (colored area B in Fig. 5b). However,
in this case the energy of δ-waves decreased, that
was associated with event-related desynchronization.
While ERD took place in δ-band, μ-rhythm exhib-
ited event-related synchronization,whichwaswell pro-
nounced in the most areas of the brain, but reached
maximal value in central and parietal lobes and signif-
icantly decreased in temporal lobes (colored area A in
Fig. 5b).

As we already mentioned above, the brain activity
associated with the motor functions was characterized
by the interaction betweendifferent brain rhythms.This
process is illustrated in detail in Fig. 6 for the case of
motor execution. In Fig. 6a, one can see typical EEG
traces recorded in parietal and occipital lobes during a
single experimental session (RE) associated with alter-
nating motor executions. In Fig. 6b, the location of
the spectral components characterized by the maximal
energy is shown for the considered EEG recordings. In
Fig. 6c, the mean values of the spectral energy aver-
aged over α-band 〈E〉α , δ-band 〈E〉δ and the set of
EEG signals are shown. It is seen that the motor execu-
tion was accompanied by the transition of the spectral
energy between α- and δ-bands. It was demonstrated
by both the location of the most pronounced spectral
components and changes in mean (band-related) spec-
tral energy. In Fig. 6b, one can see that the spectral
components with the high energy appeared in δ-band
duringmotor execution and disappeared inα-band, and
vice versa; such components occurred again in α-band
after the motor execution finished. At the same time,
the values of spectral energy < E >α , < E >δ cal-

culated for these bands evolved in anti-phase, i.e., the
value of 〈E〉α decreased during motor execution and
〈E〉δ increased (Fig. 6c).

It is important to note that, according to Fig. 6, the
characteristic features associated with motor execu-
tions in α- and δ-bands can be identified for each sin-
gle event. This was exciting since the most studies on
motor execution and imaginary judged ERS and ERD
from the data obtained by averaging over a large num-
ber of events. In this context, our results show that for a
single event, changes in the motor-related energy in α-
and δ-bands can be extracted from EEG trials by aver-
aging them over particular brain areas. One can expect
that taken into account the identified brain areas, where
the effects of ERD and ERS are the most pronounced
(Fig. 5), it is possible to detect a single motor execution
or imagination in real time.

4 Online detection of real and imaginary
movements

In previous section, we demonstrated that δ-band
( f ∈ [1, 5] Hz) in combination with μ/α-band ( f ∈
[8, 13] Hz) can be effectively used for the extraction
of the features of the brain activity associated with
motor execution andmotor imaginary in untrained sub-
jects. Having considered the time–frequency structure
of EEG signals averaged over 100 trials associated
with the motor actions/imaginary, we found that dur-
ing the motor execution the event-related desynchro-
nization in μ/α-band took place in temporal, central
and parietal lobes, and event-related synchronization
in δ-band was most pronounced in frontal lobe. Dur-
ingmotor imaginary,μ/α-band exhibited event-related
synchronization which was mainly revealed in central
and parietal lobes and significantly decreased in tempo-
ral lobes. Similar to motor execution, motor imaginary
was characterized by a significant change in frontal
lobe δ-activity, while ME was associated with ERS in
δ-band, and MI was characterized by ERD in δ-band.

Based on the obtained results, in this section we pro-
pose a real-time algorithm, which is able to extract a
single event associated with motor execution or motor
imaginary, from the background EEG. The proposed
algorithm is based on the consideration of the wavelet
energy in δ- andμ/α-bands and includes the following
steps:
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Fig. 6 a Set of EEG signals
recorded from occipital and
parietal lobes during
experimental session RE
when alternating real
movements were
performed. The vertical
dashed lines indicate the
moments, when the actions
start. The considered brain
area is shown by the
shadow. b Location of most
pronounced spectral
components and changes in
mean (band-related)
spectral energy
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1. Selection of two brain areas for which the ERD and
ERS are the most pronounced.

2. Calculation of the wavelet energy in δ- and μ/α-
bands and averaging it over EEG channels belong-
ing to selected areas.

3. Consideration of the evolution of these energy val-
ues in time and extraction of the low (< 0.2Hz) fre-
quency component via the empirical mode decom-
position.

4. Numerical differentiation of the obtained depen-
dencies in time and extracting the cases when
these dependencies exhibit anti-phase increase and
decrease.

5. Extraction of motor-related activity with the help
of predefined thresholds.

Figure 7 illustrates the flowchart of proposed online
MI-MEdetection algorithm.One can see that algorithm
can process three different situations: (1) neither ME
norMI is detected since the correspondedEEG features
are not found (flow (a) in Fig. 7); (2) either MI or ME
is detected when the considered control characteristics
satisfy corresponding conditions (flow (b) in Fig. 7);
(3) algorithm is not detected for ME andMI events due
to passing EEG traces immediately followed by the
already detected onset of MI or ME during predefined
idle time (flow (c) in Fig. 7). In this case, the algorithm
skips EEG data points during the idle time tidle = 1s.

Figure 8 demonstrates how the proposed algorithm
shown inFig. 7was applied in a single session forwhich
(a) the alternating motor executions and (b) motor
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Fig. 7 Flowchart of online
MI/ME detection algorithm.
Flows (a)–(c) are defined
the different options of the
algorithm evaluation: (a)
corresponds to background
EEG without ME or MI
events detection, (b) either
MI or ME is detected, (c)
algorithm skips EEG data
due to predefined idle time
interval caused by motor
execution or motor
imaginary acts

imaginations were performed. In the right-hand side of
the upper panels in Fig. 8a, b,we color the areasA andB
fromwhich theEEG signalswere recorded and used for
estimation of changes inμ- and δ-activity, respectively.
These areas were used according to the results of the
time–frequency analysis described in Sect. 3.2. Thus,
for motor execution μ/α-activity was analyzed in cen-
tral, parietal and temporal lobes, while for motor imag-
inary in frontal, central, parietal and occipital lobes. δ-
activitywas analyzed in frontal lobe in both cases. In the
left-hand side of the upper panels of Fig. 8a, b, typical

EEG traces recorded from these brain areas are shown.
The vertical dashed lines indicate the time moments
at which the motor execution/imagination started. The
values of EA

α and EB
δ correspond to the wavelet energy,

averaged over f ∈ μ(α) and f ∈ δ bands, respec-
tively, and over the set of EEG traces belonging to areas
A and B. EMA

4 and EMB
4 are the empirical modes of

the 4th kind calculated for the dependencies EA
α (t) and

EB
δ (t), respectively. (EMA

4 )
′ and (EMB

4 )
′ define the time

derivative of the empirical modes EMA
4 and EMB

4 . The
shaded areas highlight the cases when (EMA

4 )′ < 0 and
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Fig. 8 Extraction of features of EEG signals associated with a
single motor execution and b motor imagination. Upper panel:
(right) colored areas A and B used for estimation of changes
in μ- and δ-activity, respectively, and (left) typical EEG trials
recorded in these areas. Lower panel: (upper traces) EA

α and
EB

δ corresponding to wavelet energy, averaged over μ (or α)-
and δ-bands, respectively, calculated from the set of EEG trials
recorded from areas A and B. EMA

4 and EMB
4 are the empirical

modes of the 4th kind, calculated for the dependences EA
α (t) and

EB
δ (t), respectively. (EMA

4 )
′ and (EMB

4 )
′ define the time deriva-

tive of the empirical modes EMA
4 and EMB

4 . The shaded areas
highlight the cases when (EMA

4 )′ < 0 and (EMB
4 )′ > 0 (for

real movements) and (EMA
4 )′ > 0 and (EMB

4 )′ < 0 (for imag-
inary movements). The pulses (detection markers) indicate the
moments of timewhen themotor execution ormotor imagination
took place. (Color figure online)

(EMB
4 )′ > 0 (for real movements) and (EMA

4 )′ > 0
and (EMB

4 )′ < 0 (for imaginary movements). These
conditions correspond to an increase in δ-activity and
a decrease in μ/α)-activity for real movement, and a
decrease in δ-activity and an increase in μ/α-activity
for imaginary movement. The pulses in the lower panel
of Fig. 8 indicate the moments of time when (a) motor
execution or (b) motor imagination took place.

One can see that the proposed algorithm was able to
identify themotor execution andmotor imaginary from
the background EEG. Having applied to the experi-
mental session included 20 events of ME and 20 events
of MI, our algorithm was able to correctly recognize
19 ME events and 16 MI events. The number of false
events was 0 and 2, respectively, for these sessions.

Group analysis performed for 12 subjects demon-
strated 92.9 ± 7.8% ME events detected with 5.5 ±
4.2% false alarm rate and 81.6 ± 6.2% MI events
detected with 9.1 ± 6.2% false alarm rate. Motor
executions were recognized in average not later than
0.5± 0.2 s after they had actually been started. Imagi-
nary movements were sometime recognized 1.9±1.1 s
after they started, that likely was caused by the lack of
training.

5 Conclusion

The event-related synchronization and event-related
desynchronization are known to be associated with
motor execution and motor imaginary. These effects
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were actively studied in the frequency bands of 8–
10, 10–12, 12–20 and 20–30Hz. At the same time,
event-related desynchronization (ERD) and event-
related synchronization (ERS) in low-frequency δ-
band remains poorly investigated in the case of motor-
related brain activity, but known to be associated with
decision-making [49].

In this paper, based on multifractal and time–
frequency analysis we have shown that the effect of
ERD and ERS in δ-band along with μ/α) band was
associated with motor execution and motor imagina-
tion.

The performed multifractal analysis has revealed
significant distinctions between real and imaginary
arm movements which were reflected in the value of
the mean Hölder exponent. Considering the set of the
Hölder exponents calculated from all EEG channels,
we have found that the most significant distinctions
between motor execution, motor imaginary and back-
ground EEG can be extracted in frontal lobe.

Having analyzed the time–frequency of the EEG
signals, we have demonstrated that such behavior of
the Hölder exponent was connected with the effect of
ERD and ERS in δ-band. We have shown that δ-band
( f ∈ [1, 5] Hz) in combination with μ/α-band ( f ∈
[8, 13] Hz) can be effectively used for the extraction of
the features of the brain activity, associated with motor
execution and motor imaginary. We have found that
during the motor execution, the event-related desyn-
chronization in μ/α-band occurs in temporal, central
and parietal lobes, and event-related synchronization
in δ-band was most pronounced in frontal lobe. During
motor imaginary, μ/α-band exhibited ERS which was
mostly seen in central and parietal lobes and signifi-
cantly decreased in temporal lobes. It was accompa-
nied by ERD in δ-band, which was highly pronounced
in frontal area.

We suppose that such EEG signatures of MI are
caused by the lack of subject training. Taking into
account [48], one can expect that in trained subjects the
time–frequency and spatio-temporal structures of EEG
signals, corresponded to imaginarymovement, are very
similar to once, corresponded to real movement. In this
case, application of the proposed method is expected
to reveal effects of ERD in μ/α- and β-bands instead
of ERS, obtained in untrained subjects. In additional,
it is expected that, unlike the real movement, ERS will
take place in δ-band, which is associated with cognitive
activity, associated with decision-making [49], since

subject has to decide every time either to move with
the hand or not.

Based on the obtained results, we have proposed an
algorithm enable to extract a single event associated
with either motor execution or motor imaginary, from
the background EEG.

We believe that the obtained results are of interest
for fundamental science. They clarify the relationship
between a singularity spectrum and a wavelet energy
spectrum of EEG signals. In addition, the revealed
motor-related features of EEG signals are valuable for
neuroscience and other areas of science and technology
aimed to understand brain properties and design brain–
machine interface systems (BMI) [52,53]. In this con-
text, one knows that the efficiency of BMI is defined
by the ability of the operator to generate certain sta-
ble EEG patterns. That means that the BMI is affected
by operator proficiency and the inter-subject variabil-
ity [29]. In this respect, our results suggest possibility
to develop unified ME-MI classifier. This possibility
in its turn can be applied for building brain–machine
interface for multiple and untrained users [30].
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