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Abstract

Background: The significance of tactile stimulation in human social development and personal interaction is well documented; how-
ever, the underlying cerebral processes remain under-researched. This study employed functional magnetic resonance imaging (fMRI)
to investigate the neural correlates of social touch processing, with a particular focus on the functional connectivity associated with the
aftereffects of touch. Methods: A total of 27 experimental subjects were recruited for the study, all of whom underwent a 5-minute
calf and foot massage prior to undergoing resting-state fMRI. Additionally, 11 healthy controls participated solely in the resting-state
fMRI recording. A functional connectivity network analysis was conducted to examine the alterations in connections between different
brain regions following massage. Results: The findings indicated the involvement of discrete neural networks in the processing of social
touch, with notable discrepancies in functional connectivity observed between the experimental and control groups. The study revealed
that the control group exhibited a higher degree of connectivity within a subnetwork comprising 25 connections and 23 nodes than the
experimental group following the massage intervention. The experimental group showed hypoactivation in this subnetwork following
the massage. The left anterior pulvinar thalamus and the right pregenual anterior cingulate cortex, which serve as the key hubs within
this subnetwork, exhibited higher clustering and increased node strength in the control group. Relatively small and unequal sample sizes
are the limitations of the study that may affect the generalizability of the results. Conclusions: These findings elucidate the neural under-
pinnings of tactile experiences and their potential impact on behavior and emotional state. Gaining insight into these mechanisms could
inform therapeutic approaches that utilize touch to mitigate stress and enhance mental health. From a practical standpoint, our results
have significant implications for the development of sensory stimulation strategies for patients with prolonged disorders of consciousness,
sensory loss, autism spectrum disorders, or limited access to tactile interaction in their upper extremities.

Keywords: neuroscience; touch processing; fMRI; functional connectivity; affective touch; massage; sensorimotor integration; anterior
cingulate cortex; thalamus

1. Introduction
Given the importance of touch in human social de-

velopment and personal interaction, there has been surpris-
ingly little functional magnetic resonance imaging (fMRI)
research on the brain mechanisms involved in the process-
ing of social touch and its associated affective properties. In
addition, research on the perception of social touch in the
lower extremities of humans has been extremely limited,
despite its potential to greatly expand our understanding of
the functions of the c-tactile (CT) system [1–4].

Research shows that when people are touched gently
and slowly, especially on their hairy skin, they experience
a surge of the hormone oxytocin. This hormone plays a
critical role in stress regulation and overall well-being [5].
Simply speaking, gentle, moderate pressure on the skin and
slow touch can help reduce stress and have a positive ef-
fect on physical and mental health [6,7]. In particular, mas-

sage therapy offers significant benefits as an adjunct treat-
ment for chronic pain and emotional distress, including de-
pression and anxiety. This evidence highlights the potential
positive impact of massage therapy in alleviating these con-
ditions and improving overall well-being [8,9].

In general, the skin serves a dual sensory function,
allowing the perception of touch and temperature through
specific nerve fibers calledA-beta andA-delta fibers, which
are responsible for the rapid detection of stimuli and the
rapid transmission of information about physical proper-
ties. In addition, a separate class of nerve fibers known as
CT plays a critical role in transmitting emotional sensations
such as dull pain and itch [10–12]. The sensations perceived
through the discriminative and affective pathways engage
different neurological mechanisms within the somatosen-
sory and insular cortices, respectively. This differentiation
in processing highlights the distinct roles these pathways
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play in shaping our tactile experiences and the emotional
valence associated with them [13]. However, recent studies
have uncovered C-tactile afferents that specifically encode
the pleasurable aspects of tactile sensation [14,15].

The existing literature suggests that the process of
touch discrimination occurs primarily in the primary and
secondary somatosensory cortices, where themajority of A-
beta afferents terminate [16–18]. However, the exact areas
of the brain responsible for processing the affective aspect
of touch remain unclear. Anecdotal evidence suggests the
involvement of the anterior cingulate cortex [19] and the
insula [18] in this process, but further research is needed
to gain a more definitive understanding of the cerebral ar-
eas involved in processing the emotional aspects of tactile
sensation. Investigating functional connectivity in the af-
tereffects of touch is important for several reasons. First, it
helps us understand how different areas of the brain com-
municate and work together to process and integrate infor-
mation from touch sensations [20]. Second, it allows us to
study the neural mechanisms underlying the processing of
touch experiences, which can provide insight into the cog-
nitive and emotional aspects of touch processing [21].

It is important to emphasize that the regulation of the
CT system response to pleasant social stroking with the
hand has undoubtedly received the most attention in exist-
ing research [22,23]. Conversely, the mechanisms of in-
formation transmission for CT stimulation from less com-
monly studied regions of the body, such as the back, ab-
domen, and legs, have received significantly less research
attention.

The present fMRI study aims to investigate the func-
tional connectivity and the neural correlates of the lasting
effects of touch in a form of lower limb massage, which
may further our understanding of how touch experiences
can have lasting effects on our behavior and emotional state.
We are trying to identify resting-state brain networks after
massage that are different in the experimental group com-
pared to the control group.

2. Materials and Methods
2.1 Subjects

27 healthy experimental subjects (EX; 13 male, 14 fe-
male) and 11 healthy controls (HC; 5 male, 6 female) par-
ticipated in the study. Inclusion criteria for participation
in the study included age between 20 and 40 years, right-
handedness, no history of neurological or psychiatric dis-
eases, no drug use before the study, native Russian speak-
ers, no alcohol consumption for at least 48 hours before
the study, no tobacco or caffeine consumption for at least
2 hours before the start of the study, and no use of psy-
choactive substances. All subjects underwent a clinical ex-
amination and resting-state functional magnetic resonance
imaging (MRI).

2.2 Experimental Design
The experiment involved the administration of a 5-

minute calf and foot massage, preceded and followed by
a rest period, as shown in Fig. 1. Thus, for each participant
we had two 8-minute periods of interest: Rest1 and Rest2.
In addition, there was a control group in which subjects only
lay down in the scanner for 5 minutes instead of receiving
a massage. Two resting-state fMRI sessions were acquired
for each subject. Each resting-state fMRI session lasted 480
seconds. The massage was performed by two specialists at
the same time to rule out any laterality effect.

The massage stimulation consisted of four sequential
movements described below. The sequence of movements
was repeated five times from the first to the fourth. The
whole procedure took 5 minutes and a stopwatch was used.

(1) Massage movements with the thumbs from the
centre of the leg (margo anterior tibiae) upwards about 2–3
cm and then towards the calf muscle on both sides, with the
massage movements directed from the foot to the knee. The
pressure is moderate. Duration: 15–16 seconds.

(2) Broad circular movements with the palm of the
hand in a clockwise direction from the knee to the foot. The
pressure is medium to light. Duration: 10–11 seconds.

(3) Friction movements with the palms of both hands
from the foot to the knee and back. The movements are
quick, with moderate to strong pressure. Duration: 15–16
seconds.

(4) Broad stroking movements with both palms from
the knee to the foot and back. The movement is repeated
twice with light pressure. Duration: about 18–20 seconds.

We asked participants to rate the pleasantness of the
massage using a scale of 1 to 5, where 1 indicated “unpleas-
ant”, 2 was “more unpleasant than pleasant”, 3 represented
“neutral”, 4 stood for “more pleasant than unpleasant”, and
5 signified “pleasant”. The results showed no variation
in assessments, as all participants rated the procedures as
pleasant. After the study, we conducted additional inter-
views with the participants about their experience of the
massage procedures and invited them to suggest any im-
provements. The majority (23 subjects) indicated that there
was nothing to improve, while a few (4 subjects) mentioned
that the MRI setup was a limitation.

Based on these findings, we conclude that the social
touch procedure, performed in the form of massage, ex-
hibits characteristics associated with an affective type of
touch.

2.3 Experimental Equipment
Functional and anatomical images were acquired us-

ing a 3.0-T Philips Achieva (Koninklijke Philips NV, Am-
sterdam, The Netherlands) with a 20-channel head coil.
Each functional run consisted of 360 T2-weighted echopla-
nar images, each resting condition—240 slices. The imag-
ing parameters were 2× 2mm in-plane voxel size, covering
the entire brain volume in 4 mm slices; interslice gap = 0
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Fig. 1. Design and timeline of the experimental study.

mm; repetition time (TR) = 2000 ms; echo time (TE) = 30
ms; and 76× 74 matrix, high-resolution T1 image 1× 1×
1 mm). Participants were instructed to relax and lie still.

2.3.1 Preprocessing

The analyzed data were processed using the SPM12
statistical processing package (https://github.com/spm/spm
12) [24] running on the MATLAB platform (version
2019b). The preprocessing procedure included motion cor-
rection, co-registration, segmentation of the structural data,
and normalization to the Montreal Neurological Institute
(MNI) standardized space in a typical manner (see Section
2.1.3 in Ref. [25] for details) to ensure consistency across
the dataset.

2.3.2 Functional Network Reconstruction and Network
Measures

To determine the connectivity between different
brain regions, we calculated the blood oxygenation level-
dependent (BOLD) time series in 144 different regions (re-
gions of the cerebellum were excluded as they were not rel-
evant to our study) according to the Automated Anatomical
Labeling Atlas (AAL3), which is used to standardize and
simplify the delineation of brain regions [26]. We chose the

AAL atlas because it is widely used in functional network
analysis, thus conforming to established standards and fa-
cilitating comparability of results across studies [27]. To
determine connectivity between different brain regions, we
computed and detrended the average time series xi(t) for
each of the nodes, and then estimated Pearson correlation
coefficients for all possible pairs of averaged parcellated ac-
tivity patterns. We only consider correlation values with a
significance level of p < 0.05 and preserve the sign.

To analyze the topology and larger-scale features of
the functional network, we examined the following net-
work metrics: node strength (NS), betweenness central-
ity (BC), eigenvector centrality (EC), clustering coefficient
(CC), global and local efficiencywhich are often used to an-
alyze the features of resting-state fMRI-based brain connec-
tivity [25,28,29]. More information on the methods used in
this study can be found in the Supplementary Material.

We computed both the distributions of these network
metrics across individual nodes and the overall average val-
ues for each metric, with the exception of global efficiency,
which is inherently a network-wide measure. This allowed
us to evaluate the variation in network properties at both the
node and network level, providing a more comprehensive
understanding of the functional network structure. Each
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Table 1. Statistical effects for different global network metrics.
Measures t HC–EX R1 p-value t HC–EX R2 p-value

Betweenness centrality 0.0247 0.9803 0.0944 0.9249
Eigenvector centrality 0.0630 0.9498 0.1281 0.8982
Node strength 1.1351 0.2638 1.7854 0.0826
Clustering coefficient 1.3196 0.1953 1.8066 0.0792
Global efficiency 1.0263 0.3116 1.7882 0.0822
Averaged Local efficiency 1.2355 0.2247 1.6638 0.1048

Measures t HC R1–R2 p-value t EX R1–R2 p-value

Betweenness centrality 0.7225 0.4712 1.2395 0.2172
Eigenvector centrality –1.1378 0.2571 –1.0401 0.3000
Node strength 0.4375 0.6711 1.2948 0.2068
Clustering coefficient 0.7749 0.4563 1.3553 0.1870
Global efficiency 0.7638 0.4626 1.7607 0.0900
Averaged Local efficiency 0.1354 0.8936 0.7068 0.3782
Here, R1 denotes Rest1, R2—Rest2, each t-column corresponds to the t-values for
the contrast indicated in that column, where the “–” sign indicates the conditions
being compared. Next to each t-column is a columnwith the corresponding p-values.
HC, control group; EX, experimental group.

metric provides a unique perspective on the functioning and
organization of interconnected regions in the brain, con-
tributing to a comprehensive understanding of the complex
dynamics at play.

2.4 Statistical Analysis
The data were processed to examine functional con-

nectivity across the two groups using network-based statis-
tics.

To identify significant differences in global network
measures between the control group (HC) and the experi-
mental group (EX), we performed statistical tests for each
metric using the t-test. To assess the normality of the dis-
tributions of these measures, we applied the Kolmogorov-
Smirnov one-sample test to ensure that the data met the nor-
mality assumption necessary for the validity of the t-test re-
sults.

To identify statistically significant differences in the
functional connectivity between the groups, we applied the
framework of network-based statistics (NBS) [30]. Specif-
ically, we assessed significance at the p = 0.05 level using
the t-test for pairwise comparisons involving the two rest
conditions and 50,000 permutations.

We then defined regions of interest (ROIs) based on
the results of the group-level statistical analysis using NBS.
This was done to reduce the search space in subsequent
analyses. We defined the ROIs as the network nodes or
brain regions characterized by their inclusion in the maxi-
mum number of significantly changing connections accord-
ing to the NBS results. For these ROIs, we examined the
local network metrics and compared them between groups,
using the t-test with Bonferroni correction to adjust for the
multiplicity of tests due to the number of ROIs considered.
This statistical method adjusts the significance threshold to

keep the family-wise error rate (FWER) at a desired level,
thus reducing the risk of false positives due to the large
number of comparisons performed while maintaining sta-
tistical rigor.

3. Results
3.1 Global Network Metrics

Statistical analysis of the global network metrics al-
lowed us to identify some important trends, in particular
to note that there are no significant between-group differ-
ences for all network measures during condition Rest1 (see
Table 1). However, for condition Rest2, we see near sig-
nificant between-group effects on measures of global effi-
ciency, node strength, and clustering coefficient. In addi-
tion, for the control group, there is no significant difference
between Rest1 and Rest2, while the experimental group
shows near significant difference for the global efficiency
measure. Thus, global efficiency has near significant ef-
fects both in the between-groups comparison in Rest2 and
for the experimental group between conditions.

3.2 Network-Based Statistics

In the Rest1 condition, no significant changes in con-
nectivity were observed between the EX and HC groups.
However, in the Rest2 condition, the connectivity in the
HC-EX direction showed significant changes in 25 connec-
tions (p = 0.038, Fig. 2 and Table 2). In general, the sit-
uation is characterized by a limited number of hubs with
a moderate number of connections clustered around them.
Differences in functional connectivity, particularly around
the thalamus and anterior cingulate cortex regions, were
found between subjects from the EX group and healthy con-
trols, as shown in the provided Table 2 and Fig. 2. The
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Fig. 2. Significantly different connections in the Rest2 condition obtained with NBS method. NBS, network-based statistics.

Table 2. Significantly different connections in the Rest 2 condition obtained with the NBS method.
Node 1 Node 2 HC EX HC-EX

Cingulate Mid R Putamen R 0.309473 0.109355 0.200118
Caudate L Temporal Sup R 0.487169 0.298977 0.188192
Supp Motor Area L Thal VA L 0.26115 0.148991 0.112159
Occipital Mid L Thal VA L 0.171402 0.053322 0.11808
Putamen R Thal MDm L 0.338766 0.156676 0.18209
Supp Motor Area L Thal MDm R 0.280608 0.106528 0.17408
Temporal Sup R Thal MDm R 0.332682 0.137087 0.195595
Occipital Mid L Thal LGN L 0.316269 0.15438 0.161889
Occipital Inf L Thal LGN L 0.289609 0.121395 0.168215
Frontal Inf Tri L Thal PuA L 0.307797 0.115729 0.192068
Frontal Sup Medial L Thal PuA L 0.283928 0.13854 0.145388
Frontal Sup Medial R Thal PuA L 0.278407 0.098276 0.180131
Insula R Thal PuA L 0.30788 0.137569 0.17031
Putamen R Thal PuA L 0.343024 0.177622 0.165402
Thal MDm L Thal PuA L 0.313476 0.173676 0.1398
Thal MDm L Thal PuL R 0.187783 0.073152 0.114631
Precuneus R ACC sub R 0.11556 0.017775 0.097786
Temporal Sup R ACC sub R 0.185459 –0.02608 0.211539
Thal VL R ACC sub R 0.13293 –0.02614 0.159073
Putamen R ACC pre L 0.37058 0.117458 0.253121
Frontal Inf Tri L ACC pre R 0.469782 0.242122 0.22766
Putamen R ACC pre R 0.420345 0.140241 0.280104
Temporal Sup R ACC pre R 0.404532 0.180162 0.22437
Thal VL R ACC pre R 0.314918 0.128285 0.186634
Thal MDm L ACC pre R 0.300931 0.093689 0.207242
Columns HC and EX contain the connection strengths between the corresponding
nodes, estimated by Pearson correlation, for the healthy control and experimental
groups, respectively. Column HC-EX contains the differences of the connection
strengths for the corresponding groups. ACC, anterior cingulate cortex; Thal, Tha-
lamus; PuA, anterior pulvinar; MDm, mediodorsal magnacellular; VA, ventral ante-
rior; VL, ventral lateral; LGN, lateral geniculate.
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Table 3. Five nodes that participated in the largest number of
significant connections previously revealed by the NBS

method for the HC>EX comparison in the Rest2 condition.
Nodes Number of significant

connections
BC EC NS CC

Thal PuA L 6 - - + +
ACC pre R 5 - + + +
Putamen R 5 - - - -
Thal MDm L 4 - - - -
Temporal Sup R 4 - - - -
Columns denote network measures: BC, betweenness centrality;
EC, eigenvector centrality; NS, node strength; CC, correlation co-
efficient. Sign “+” means a significant effect for the corresponding
network metric and node in the Rest2 condition for the comparison
HC>EX, “-” means no significant effect.

maximum difference between the groups was found for the
Putamen R – anterior cingulate cortex (ACC) pre R con-
nection (0.28), while the highest absolute values for both
groupswere found for the Caudate L – Temporal Sup R con-
nection (0.48—for the HC group, 0.29—for the EX group).
Observably, there is a notable absence of activity in the av-
erage connections Temporal Sup R – ACC sub R and Thal
VLR –ACC subR in the EX group, whereas the connection
activation is preserved in the HC group.

3.3 ROI Analysis

ROIs were restricted to the five nodes (see Table 3)
that participated in the largest number of significant con-
nections previously revealed by the NBS method. We cal-
culated local network metrics for the given nodes and com-
pared them statistically between groups. We found that
only the left anterior pulvinar thalamus (Thal PuA L) and
right pregenual anterior cingulate cortex (ACC pre R) nodes
showed significance for most measures (see Table 3). For
betweenness centrality, no node was significant after cor-
rection. For eigenvector centrality, the only node found
significant was ACC pre R. For the remaining measures—
node strength and clustering coefficient—the nodes ACC
pre R and Thal PuA L showed significant effects.

Based on the one-sided prevalence of significant con-
nections in the control group, we can assume that this cor-
responds to the norm and indicates hypoactivity during the
experiment in the EX group.

4. Discussion
The present study provides valuable insights into the

neural connectivity patterns associated with touch, with a
particular focus on lower limb massage and its localized ef-
fects on sensory information processing nodes. The results
show that the control group showed a significantly higher
degree of connectivity within a subnetwork consisting of
25 connections and 23 nodes compared to the experimental

group after the massage intervention. In other words, the
experimental group showed hypoactivation in this subnet-
work after massage.

The key hubs in this subnetwork—the left anterior pul-
vinar thalamus and the right pregenual anterior cingulate
cortex—showed a higher degree of clustering and increased
node strength in the control group. This suggests that the
massage intervention is associated with disrupted cluster-
ing processes and altered brain network segregation around
these nodes.

In addition, the global efficiency results indicated a
trend towards reduced integration processes in the brain net-
work after massage, although this effect was not statistically
significant. This may suggest a therapeutic effect of mas-
sage, where relaxation affects network architecture. Net-
work segregation in clusters appeared to decrease, possibly
due to relaxation and reduced involvement of nodes in in-
formation processing.

The lack of a statistically significant effect at the
global level can be attributed to the localized nature of the
effects identified in specific nodes. This is supported by
the lack of significant changes in connections during Rest1,
confirming no differences between groups prior tomassage.
While focusing on the most prominent hubs, the study also
discusses their potential influence on the experimental out-
comes.

4.1 Thalamus Anterior Pulvinar (PuA) and Mediodorsal
Magnacellular (MDm)

In particular, the anterior pulvinar has connections
with the prefrontal cortex, parietal cortex, and other associ-
ation areas that are critical for complex sensory processing
and motor planning [31]. Evidence of abnormal thalamic
connectivity in autism spectrum disorders (ASD) and sen-
sory processing disorders suggests that the thalamus may
play a role in sensory overreactivity [32,33]. Themediodor-
sal magnacellular (MDm) nucleus is also involved in so-
cial and cognitive functions, including social cognition and
decision-making. It has connections with the prefrontal cor-
tex, which is involved in these processes [34].

4.2 Pregenual Anterior Cingulate Cortex

The ACC is generally involved in attention and cogni-
tive control. Touch can serve as a sensory cue that attracts
attention and may play a role in the integration of this sen-
sory information [35–37]. The ACC, including the pregen-
ual ACC, is involved in the modulation of pain perception
[38]. Touch can have an analgesic effect, in part by activat-
ing brain regions that help dampen the perception of pain.
The ACC pre is involved in this process because it inter-
acts with other areas of the brain, such as the insula and
prefrontal cortex, to regulate emotional and cognitive re-
sponses to pain [39,40]. This area is known to be affected
by touch massage [41]. Among its many anatomical con-
nections, the ACC receives nociceptive afferents from the
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thalamic nuclei and also has connections to the periaque-
ductal gray and amygdala, while functionally it is involved
in specifying the affective content of noxious stimuli and
learning to predict and avoid noxious stimuli [19,42]. The
ACC pre is involved in processing the emotional aspects of
social interactions, including touch. It helps interpret the
emotional meaning of tactile stimuli [43], which increases
positive functional connectivity between the cingulate cor-
tex and left anterior supramarginal cortex following me-
chanical affective touch therapy.

4.3 Putamen
The putamen helps coordinate and execute move-

ments in response to touch, such as reaching out to touch
an object or withdrawing from a painful touch. It receives
input from the somatosensory cortex, which provides in-
formation about touch, and integrates this information with
motor plans and intentions. This integration allows for ap-
propriate motor responses to tactile stimuli [44–46]. The
decreased activation in the somatosensory cortices over
time may represent stimulus habituation, according to the
experimental work [47,48].

4.4 Temporal Superior
Temporal superior is also involved in social cogni-

tion, including the perception and interpretation of others’
actions and emotions. It is particularly important for un-
derstanding the intentions and emotions of others based on
their touch. For example, the temporal superior can help us
interpret a pat on the back, and is known to be involved in
predicting the pleasantness of skin stroking [49]. Interest-
ingly, in the same paper [43], there is a reduction in func-
tional connectivity during touch in the ASD subjects. The
superior temporal region is a vital part of the mirror neu-
ron system and play a significant role in social cognition,
as other research has shown [50,51].

4.5 Other Findings
Although we emphasise the importance of the ACC

and pulvinar in this study, many previous studies using
fMRI [52–55] and Near-infrared spectroscopy (NIRS) [56]
have highlighted the importance of the orbitofrontal cortex
(OFC) and the insula in affective touch. The importance of
the OFC has also long been demonstrated in animal elec-
trophysiological studies [57,58]. The next study showed
differentiation in the head of the hippocampus associated
with activity in specific limbic brain areas known to be in-
volved in emotional processing [59], which is important in
the diagnosis of bipolar disorder. Our findings may have
potential in depression treatment trials [60] and other psy-
chological conditions requiring emotion regulation with so-
cial touch [61].

4.6 Future Perspectives
The study highlighted the potential of relatively short

massage sessions to reduce the activation in brain areas as-
sociated with reduced social anxiety and stress. Specifi-
cally, the abnormal activity in the discussed anterior pul-
vinar thalamus and the pregenual anterior cingulate cortex
has previously been associated with anxiety-related disor-
ders, including post-traumatic stress disorder (PTSD) and
major depressive disorder [62–64]. The use of massage
techniques such as those presented can be successfully used
in the rehabilitation and treatment of patients with PTSD
and high levels of psychological distress. In addition, the
study of resting-state changes based on fMRI data in pa-
tients with high levels of psychological distress is the focus
of our future research. One of the papers shows that peo-
ple who received more affectionate touch from their part-
ner during a stressful laboratory task experienced less stress
[65].

In addition to its effects on pain and stress, the re-
search has shown that massage therapy is also effective in
improving the quality of life of people with multiple scle-
rosis [66]. In recent years, the use of mechanical affective
touch therapy has gained attention as a promising treatment
option for controlling symptoms of anxiety disorders [67].
This approach potentially offers a non-pharmacological ap-
proach to anxiety management [68]. In line with the at-
tachment theory, the research has shown that social touch
experiences can have significant psychological benefits for
individuals [69]. These touch experiences can increase feel-
ings of safety and security and improve sleep quality [70],
as research has found notable correlations between touch
deprivation and self-reported difficulties in initiating and
maintaining sleep [71]. Furthermore, study has shown that
affection deprivation is significantly associated with sleep
disturbance [72].

4.7 Limitations
The relatively small sample size is a limitation of the

study that may affect the generalizability of the results.
However, the homogeneity of the demographic characteris-
tics of the subjects and the use of adjustments for multiple
comparisons during statistical analysis with cluster-based
permutation testing are steps taken to mitigate this limita-
tion and improve the validity of the study results.

A potential limitation of the study is the difference in
sample size between the experimental and control groups,
which could affect the representativeness and generalizabil-
ity of the results. However, due to practical constraints and
limited availability of participants, it was not possible to in-
clude a larger sample size in the control group.

The subjects had no previous experience of participat-
ing in similar massage experiments. However, it seems rea-
sonable to assume that the subjects have had experience of
receivingmassage in their lifetime. This factor was not con-
trolled for, and potentially the subjects may have responded
differently based on their previous experience.
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It is challenging to differentiate the precise influence
of social interaction and direct tactile stimulation with its
associated affective properties during the massage process.
As the subjects were not able to see the masseur in the MRI
machine, we believe that the observed effects are mainly
due to the tactile influence (touching during the massage).
Furthermore, the aim of the current study was to investigate
the effects of massage with its potential social aspect.

5. Conclusions
Our study aimed to investigate the differences in brain

activity between an experimental group of healthy subjects
before and after receiving lower limb massage and healthy
controls who did not receive massage. We performed a
functional connectivity study to examine the changes in
connections between different brain regions after massage.
In particular, we observed altered connectivity patterns in
specific networks, especially between the left anterior pul-
vinar thalamus and the right pregenual anterior cingulate
cortex. These changes in functional connectivity of brain
regions involved in touch processing persist for a signifi-
cant period of time after the touch experience.

Our findings suggest that touch experiences have ef-
fects on brain connectivity and processing, providing valu-
able insights into the neural mechanisms of touch process-
ing and the effects of such experiences.

From a practical point of view, our results have im-
portant implications for the development of sensory stim-
ulation strategies for patients with prolonged disorders of
consciousness, sensory loss, autism spectrum disorders, or
limited access to tactile interaction in their upper extremi-
ties.
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