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A B S T R A C T

This study investigates the functional brain network in major depressive disorder using network theory and
a consensus network approach. At the macroscopic level, we found significant differences in connectivity
measures such as node strength and clustering coefficient, with healthy controls exhibiting higher values.
This is consistent with disruptions in functional brain network segregation in patients with major depressive
disorder. Consensus network analysis revealed that the central executive and salience networks were predom-
inant in healthy controls, whereas depressed patients showed greater overlap with the default mode network.
No differences were found in network efficiency measures, indicating comparable brain network integration
between healthy controls and major depressive disorder groups. Importantly, the clustering coefficient emerged
as an effective diagnostic biomarker for depression, achieving high sensitivity (90%), specificity (92%), and
overall precision (90%). Further analysis at the mesoscale level uncovered unique functional connections
distinguishing healthy controls and major depressive disorder groups. Our findings underscore the utility of
analyzing functional networks from the macroscale to the mesoscale, and provide insight into overcoming the
challenges associated with intersubject variability and the multiple comparisons problem in network analysis.
1. Introduction

The integration of the concept of brain functional networks [1,2]
and the theory of complex networks [3,4] provides a powerful tool
for studying brain processes in both healthy individuals and those
with various pathologies [5,6]. A brain functional connectivity network
describes statistical associations of neural activities between distinct
and distant brain regions [7]. However, the intrinsic properties of brain
functional networks complicate their application and analysis using
conventional statistical and machine learning approaches.

The first challenge is the large feature space at the level of a brain
functional network (e.g., for 165 brain regions, there are 13530 unique
connections, as well as various network measures, both global and
local). Consequently, there is a problem of detecting spurious corre-
lations and significant effects; in statistics, this is called the multiple
comparisons problem [8].

The second challenge is the high level of inter-subject variabil-
ity, i.e., variability in the characteristics of brain functional networks
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across individuals in the same group. Many factors contribute to inter-
subject variability, including genetics, gender, age, health status, cog-
nitive level, and other exogenous and endogenous factors. Regard-
less of the cause, this problem makes it difficult to identify robust
biomarkers of brain states, including those that reflect the develop-
ment of pathological processes from the point of view of functional
connectivity.

One possible way to address the first challenge is to reduce the
feature space by using network measures instead of individual con-
nections and by constructing higher-level features. This corresponds
to the transition from mesoscale (the level of individual brain regions
and connections) to macroscale (the level of subnetworks/clusters and
global networks) analysis of the brain network [9–11]. In particular,
it allows one to analyze the properties of the brain functional network
from the perspective of considering the processes of integration and
segregation.

Integration and segregation are key concepts in understanding how
functional brain networks operate, describing how different regions
of the brain interact and process information to produce coordinated
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cognitive functions [12,13]. Integration refers to the process by which
different brain regions or subnetworks work together to produce a uni-
fied response or behavior. It involves the cooperation of multiple, often
distant, brain regions, allowing information from different sources to be
combined into a coherent whole. This is critical for complex cognitive
tasks that require the coordination of different types of information,
such as perception, attention, and memory. Segregation refers to the
process by which different regions of the brain specialize and operate
relatively independently to perform specific functions. It involves the
organization of the brain into distinct modules or communities, each re-
sponsible for a particular type of information processing. The functional
network of the healthy brain operates on a delicate balance between
integration and segregation [14].

The high level of inter-subject variability can be overcome by
identifying a group-specific functional network. The analysis is then
performed on such a network, rather than on the networks of in-
dividual subjects. This approach, called consensus network analysis,
was developed in relation to fMRI-based functional brain networks in
Ref. [15].

In this paper, we utilized the above two techniques to address the
challenging task of detecting macroscale disruptions in the functional
brain network associated with the presence of major depressive dis-
order (MDD) in a patient and identifying robust biomarkers of the
disease.

Mental disorders in general appear to be one of the determinants
of the world-wide burden of global disability — adjusted years [16,
17]. MDD is one of the main causes of disability worldwide and is
characterized by symptoms like fatigue, insomnia, and loss of appetite.
Anhedonia is one of the key symptoms in the disorder and often it
is accompanied by cognitive impairments and suicidal thoughts [18].
The percentage of people diagnosed with depression increases ev-
ery year. About 300 million people in the world are affected by the
condition, which makes it one of the main causes of disability. Ac-
cording to WHO, it is predicted by 2030 MDD to ranked first in
terms of disease of burden [19]. Pharmacological treatment can in-
fluence some of the symptoms during the episodes, however patients
may experience recurrence within a short time after discontinuing
medication [20]. Moreover, the outcome of therapeutic strategies is
suboptimal given that roughly 50% of patients do not adequately
respond to antidepressants [21,22].

Despite decades of research demonstrating alteration in various bi-
ological systems, the underlying mechanisms of MDD are still not fully
understood [23]. MDD has been associated with alterations in structure
and function of the brain [24], immunological changes [25], neuro-
transmitters [26], neurotrophic factors [27], and oxidative stress [28] .
Finding objective biomarkers have been critical challenge in the psychi-
atric field where the current diagnostic process is based on subjective
assessments of patient’s narratives, as the current diagnostic procedures
are based exclusively on interviews/ rating scales [29].

Resting state functional magnetic resonance imaging (rs-fMRI) is
a promising technique allowing for the investigation of changes in
interregional connectivity [30]. The science of large-scale neural net-
works provides a robust model for characterizing the neurobiology of
psychiatric conditions [31]. This model emphasizes the importance of
several global networks that perform different roles in human cognition
by mapping salient external and internal events – the Salience network
(SN), executing cognitive control – the Central Executive Network
(CEN) and the Default Mode Network (DMN), the activity of which
increases during rest and decreases during task performance [32,33].

During resting state there have been reported a number of al-
terations in brain effective and functional connectivity [34,35]. Re-
searchers found altered effective connectivity among the cerebellum
and cerebrum during resting-state and implicate the finding as potential
biomarker for depressive disorder [36]. Also, there are increased con-
nections from cerebellum to right thalamus and decreased connections

from the cerebellum to right angular gyrus and right precuneus [37].
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Abnormalities in DMN and Limbic network were found in patients with
depression, compared to patients with bipolar disorder [38] Moreover,
there is enhanced functional connectivity between the thalamus and
somatosensory cortex in patients with MDD, compared with healthy
controls [39]. Metaanalisis data suggests that MDD is characterized
by hypoconnectivity within the frontoparietal network and dorsal at-
tention network, and between emotion and SN, and hyperconnectivity
within the DMN [40,41].

All the above research maps the findings onto established global
connectivity networks. In our previous research, we have explored
the potential of connectivity measures which identified patterns dur-
ing rs-fMRI in a sample of MDD patients and were able to identify
the main hubs common for network measures such as node strength
and clustering coefficient (lingual gyrus, superior occipital gyrus, and
middle occipital gyrus) [42]. Moreover, good classification accuracy
(area under the curve — 0.92) was achieved by using the full con-
nectivity matrices. In recent studies, we have also considered MDD
classification using both deep learning methods based on graph neural
networks [43], which have been used to classify topological features
of functional brain networks, and interpretive machine learning meth-
ods [44], which have used various global network measures (clustering
coefficient, small-world coefficient, shortest path).

2. Subjects and methods

2.1. Subjects

We enrolled a total of 164 participants, comprising 94 individu-
als without any known psychiatric conditions (Healthy Controls, HC
group) and 70 patients experiencing with major depressive disor-
der (MDD group). Each participant underwent thorough evaluations
conducted by experienced psychiatrists, including the administration
of the Mini International Neuropsychiatric Interview [45] and the
Montgomery–Åsberg Depression Rating Scale (MADRS) [46,47]. Exclu-
sion criteria for both groups included a history of comorbid psychiatric
conditions, autoimmune diseases, neurological disorders, previous head
trauma, or the presence of metal implants incompatible with MRI scans.
Prior to participation, all individuals provided written consent in accor-
dance with the principles outlined in the Declaration of Helsinki. The
study protocol was reviewed and approved by the Ethical Committee
of the Medical University of Plovdiv (Approval No: 2/19.04.2018).

There were no significant differences between the two groups in
terms of mean age, sex distribution, or level of education. However,
as anticipated, patients exhibited significantly higher MADRS scores
compared to the healthy controls (see Table 1).

2.2. MR scanning and image processing

The MR scanning procedure was performed on a 3T MRI system (GE
Discovery 750w). The protocol included a high-resolution structural
scan (Sag 3D T1) with slice thickness of 1 mm, matrix 256 × 256, TR
(relaxation time) 7.2 s, TE (echo time) 2.3 s, and flip angle 12◦, FOV
24, resting-state functional scan — with slice thickness 3 mm, matrix
64 × 64, repetition time — 2000 ms, echo time — 30 ms, flip angle
90◦, 192 volumes [48].

Neuroimaging data were processed using SPM 12 software (Sta-
tistical Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm/). The
functional images of each participant were first realigned, co-registered
with the high-resolution anatomical image, and normalized to standard
MNI space. Parameters for the realignment step were the following:
quality 0.9, separation 4, no smoothing, 2-nd degree B-spline interpo-
lation, no wrap, 12 × 12 basis function, regularization 1 with medium
factor, without Jacobian deformations, 5 iterations, average Taylor
expansion point. Additionally, the program‘s default pipeline incor-

porated a motion-correction step for each patient. The co-registration

http://www.fil.ion.ucl.ac.uk/spm/
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Table 1
Demographic and clinical characteristics of the groups.

Healthy controls (n=94) Patients (n=70) Significance

Age (mean ± SD) 40.6 ± 11.8 41.0 ± 13.2 0.961a

Sex (M/F) 41/53 27/44 0.996b

Education (secondary/higher) 6/89 7/63 > 0.999b

MADRS score (mean ± SD) 2.0 ± 2.6 29.5 ± 6.0 < 0.001a

SD — Standard Deviation.
a Two-sample Kolmogorov–Smirnov nonparametric test.
b 𝜒2-test, MADRS — Montgomery–Åsberg Depression Rating Scale.
method was set to the normalized mutual information with the fol-
lowing parameters: separation [4 2], tolerances [0.02 0.02 0.02 0.001
0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001], histogram smoothing
[7 7]. MNI normalization parameters were the following: bias regular-
ization 0.0001, bias FWHM 60 mm cutoff, affine regularization ICBM
European brain template, warping regularization [0 0.001 0.5 0.05
0.2], no smoothing, sampling distance 3.

As a result, we obtained voxel-level blood-oxygen-level-dependent
(BOLD) signals.

2.3. Network analysis

2.3.1. Reconstruction of brain functional network
The brain volume was parcellated into 165 regions (see Supplemen-

tary material S1) according to the automated anatomical labeling atlas
AAL3 [49]. We have chosen the AAL atlas because of its widespread use
in functional network analysis [50]. To assess the connectivity between
pairs of brain regions (the so-called, connectivity matrix), we calculated
the average BOLD time series 𝑥𝑖(𝑡) for each of 165 brain parcellations
nodes), detrended them, and estimated Pearson correlation coefficients
for all pairs of the averaged parcellation activities [51]. The resulting
onnectivity matrix represents the functional brain network.

.3.2. Network measures
To analyze the topology and macroscale properties of a func-

ional network, we considered the following network measures: node
trength, betweenness centrality, eigenvector centrality, clustering co-
fficient (CC), global and local efficiency. We computed both the
istribution of these metrics across nodes and the network-wide aver-
ges (except for global efficiency, which is by definition a network-wide
easure). These metrics provide valuable insights into the connectivity
atterns and the characteristics of segregation and integration of brain
etworks:

• The node strength determines how strongly a node is directly
connected to other nodes in the network by summing the absolute
edge weights associated with the edges connected to it. All values
are standardized and higher values indicate higher centrality
within the network [52].

• The betweenness centrality represents the fraction of all shortest
paths within the network that pass through the given node. Nodes
with higher betweenness values share a large number of shortest
paths [53]. This metric has been shown to be useful in detecting
traumatic brain injury [54].

• Eigenvector centrality is a self-referential importance metric:
nodes have an increased importance value if they are connected
to other important nodes. The eigenvector centrality of a node 𝑖 is
equal to the 𝑖th element of the eigenvector related to the largest
eigenvalue of the adjacency matrix [55].

• The clustering coefficient assesses the amount of connectivity
between neighboring nodes in the network. The weighted clus-
tering coefficient calculates the average intensity of all triangles

associated with each node [56].
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• The path length metric reflects the average shortest path length
in the network. The global efficiency metric is the average of the
inverse of the shortest path [57]. The local efficiency metric is
essentially the global efficiency calculated based on the neighbors
of a given node. In neuroscience, efficiency is used to discuss data
transfer through a neural network.

2.3.3. Consensus network
To reduce intersubject variability, we used the concept of consensus

network which was first proposed for fMRI-based functional network in
the Ref. [15]. The basic idea behind constructing a consensus network
is to identify the common connections observed in the majority of
networks within each group (HC and MDD groups). To determine the
consensus network, we first removed all insignificant connections (with
𝑝 > 0.05) and then kept only those connections that were present in
all subjects of the respective group (HC or MDD). Algorithmically, to
construct a consensus network, we perform the following procedure for
each group:

1. Binarization of all networks based on the significance levels 𝑝,
so that each connection strength 𝑤𝑖𝑗 between nodes 𝑖 and 𝑗 is
transformed as:

𝑤𝑖𝑗 =

{

1, 𝑝𝑖𝑗 < 0.05
0, 𝑝𝑖𝑗 ≥ 0.05.

(1)

2. Averaging of binarized connection strengths over all networks in
the group:

𝑤∗
𝑖𝑗 =

1
𝑁

𝑁
∑

𝑛=1
𝑤𝑛

𝑖𝑗 , (2)

where 𝑛 is the network number, 𝑁 is the number of networks in
the group.

3. Binarization of the resulting connection strengths as follows:

�̃�𝑖𝑗 =

{

1, 𝑤∗
𝑖𝑗 ≥ 0.99

0, 𝑤∗
𝑖𝑗 < 0.99.

(3)

The resulting connectivity matrix �̃� corresponds to the consensus
network for the considered group.

2.3.4. Optimal community structure
We determined the optimal community structure that represents a

subdivision of the network into distinct groups of nodes (called clusters
or modules), which maximizes the number of edges between members
within each subgroup and minimizes the number of edges between
subgroups [58]. We did not use any initial community affiliation vector
and used the Louvain community detection algorithm with the reso-
lution parameter was set to 0.05, objective function type or custom
objective matrix was set to symmetric treatment of negative weights.

For the network calculations we used the Brain Connectivity Tool-
box [59].
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Fig. 1. (Left panel) The distributions across nodes of the differences between the group-averaged network measures for the HC and MDD groups for (a) eigenvector centrality,
(b) clustering coefficient and (c) node strength. The green shaded intervals indicate the node numbers for which the corresponding network measure is significantly higher in the
HC group compared to the MDD group. Statistical inferences were made using permutation tests with Bonferroni correction. (Right panel) The brain images with the significant
nodes from the corresponding left panels.
2.4. Statistical analysis

2.4.1. Comparison of mean measures
To identify significant differences in the averaged network mea-

sures at the group level (HC vs. MDD), we performed statistical tests
separately for each measure using the t-test. We used the Kolmogorov–
Smirnov one-sample test to test the normality of the distributions.

2.4.2. Comparison of distributions of network measures
To address the multiple comparisons problem and a possible non-

normality of the distributions of network measures across nodes, we
used the following permutation-based approach with the Bonferroni
correction for 165 comparisons for individual regions. First, for each
node, we computed the difference between the group-averaged network
measures for the initial HC and MDD groups. Next, the samples from
the MDD and HC groups were pooled, and the differences between
the group-averaged network measures were computed for different
ways of dividing the pooled values into two groups of size HC and
MDD. The set of these computed measures was the possible distribution
for this sample under the null hypothesis that the group labels were
interchangeable (i.e., randomly assigned). After 10000 permutations,
we obtained the permutation distribution for each node. We could then
determine the position of the initial difference value on the permutation
distribution. If it was within the Bonferroni-corrected 95th percentile
(or 97.5th percentile for the two-tailed test), the null hypothesis was
true, otherwise it was rejected.

2.5. Linear discriminant analysis

We utilized Linear Discriminant Analysis (LDA in Classification
learner toolbox, Matlab) to explore the accuracy of diagnosis clas-
sification based on different network features. The linear coefficient
4 
threshold was set to zero. The discriminant type was set to the recom-
mended by the toolbox ‘‘pseudolinear’’ or ‘‘pseudoquadratic’’ type to
avoid problems with zeroes and negative values in the predictors set.
Other parameters including the enforced amount of regularization or
prior probabilities were not applied. The chance level of the LDA for
the considered problem is 50%.

We denoted true positive as 𝑇𝑃 , false positives as 𝐹𝑃 , and negatives
as 𝑇𝑁 and 𝐹𝑁 . Then, the precision of the model was calculated as

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

,

specificity as

Specif icity = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

,

sensitivity as

Sensitivity = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

,

and F1-score as

𝐹1 =
2 ∗ Precision ∗ Sensitivity
Precision + Sensitivity

.

2.5.1. K-fold cross-validation
LDA k-fold cross-validation is a machine learning technique that

evaluates the predictive power of a model by dividing the dataset
into multiple subsets (called folds), training the model on the subsets,
and validating it on the remaining fold. This approach improves the
accuracy of the evaluation by ensuring that it is performed on the
unseen data. It also helps avoid the problem of potential overfitting,
where a model is too specific to the training data. Using k-fold cross-
validation with 𝑘 = 5 in our work meant dividing the dataset into 5
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Fig. 2. (A) Group-averaged connectivity matrices for the HC and MDD groups. (B) Matrices corresponding to the calculated consensus networks for the HC and MDD groups.
folds, training the model on 4 folds (80% of the data), and validating
it on the remaining fold (20% of the data). This process was then
repeated 5 times, with the validation data changing in each iteration.
The average accuracy across all iterations was used to evaluate the
performance of the model. To further reduce overfitting and variance
in the results and to provide a more accurate and robust assessment of
the model’s predictive power, we repeated the entire process of dividing
the dataset into 5 folds, training the model on 4 folds, and validating
it on the remaining fold 100 times, and calculated the average.

2.6. Correspondence to the large-scale brain networks

To determine the similarity of the considered subnetwork to the
large-scale brain network, we calculated the ratio of common nodes
between these networks to the total number of nodes in the large-scale
network. This resulted in the percentage of similarity of the considered
subnetwork to the large-scale brain network. The composition of nodes
(brain regions) included in large-scale brain networks was determined
based on the literature review [60–62]. We considered the following
major large-scale brain networks: Default Mode Network (DMN), Cen-
tral Executive Network (CEN), Left Ventral CEN (LCEN), Right Ventral
CEN (RCEN), Dorsal CEN (DCEN), Dorsal Attention Network (DAN),
and Salience Network (SN); the lists of nodes for these large-scale
networks are shown in Supplementary Material S2.

3. Results

3.1. Network measures analysis

The character group-averaged connectivity matrices for the HC and
MDD groups are shown in Fig. 2A. Qualitatively (visually) these ma-
trices are very similar. Nevertheless, t-test revealed that the network-
wide averaged node strength and clustering coefficient are significantly
higher in the HC group compared to the MDD group (see Table 2).

The permutation test found the sets of nodes where the local net-
work measures differed significantly between the HC and MDD groups
(see Fig. 1). The largest set of significant nodes is observed for cluster-
ing coefficient and the smallest set was found for eigenvector centrality;
5 
Table 2
Statistical effects of different global network measures.

Measures 𝑇162 HC>MDD p

Eigenvector centrality 0.9795 0.3288
Node strength 14.8127 <0.0001
Clustering coefficient 21.2212 <0.0001
Betweenness centrality −0.1606 0.8726
Global efficiency 1.4545 0.1477
Local efficiency −0.8350 0.4049

significant nodes were also found for node strength. There were signifi-
cant effects only in one direction (HC>MDD). There were no significant
effects for betweenness centrality, local and global efficiency.

A higher clustering coefficient reflects a higher level of segregation
within local clusters in healthy controls, indicating that information
is processed efficiently within localized brain subnetworks or clus-
ters [63]. Moreover, the significant effect for the corresponding average
metric (Table 2) means that the higher level of segregation in the
HC group is observed in most brain regions. The effects found for
the node strength (Fig. 1c and Table 2) are consistent with the above
conclusion. At the same time, the lack of statistical effects for global
efficiency means that global integration processes in the brain do not
differ significantly between the HC and MDD groups, suggesting that
information transfer between network clusters is not fundamentally
different between the groups.

Interestingly, the significant nodes for eigenvector centrality, where
values are higher in the HC group, are mainly located in the cerebral
cortex (Fig. 1a). A high eigenvector centrality means that the node is
connected to a high number of important or hub nodes [64]. Thus, we
identified disparities in the localization of important hubs in the HC
and MDD groups.

3.2. Analysis of consensus networks

We calculated consensus networks for the HC and MDD groups (see
Figs. 2B and 3) to identify differences between the groups in specific
network patterns. The consensus networks show clearly distinguishable
differences between the HC and MDD groups. We compared these
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Fig. 3. Consensus networks for the (a) HC and (b) MDD groups. Dots represent nodes in the network, while straight lines depict the connections between them.
Table 3
Correspondence of the consensus networks of the HC and MDD groups to the large-
scale brain networks; the table shows the correspondence percentages, the number of
matching nodes to the total number of nodes for each large-scale network.

Consensus network DMN CEN LCEN RCEN DCEN DAN SN

HC group 60% 80% 83% 60% 92% 17% 100%
6/10 8/10 5/6 3/5 11/12 2/12 6/6

MDD group 80% 50% 67% 60% 83% 17% 33%
8/10 5/10 4/6 3/5 10/12 2/12 2/6

DMN (Default mode network), CEN (Central executive network),
LCEN (Left Ventral CEN), RCEN (Right Ventral CEN), DCEN (Dorsal CEN),
DAN (Dorsal attention network), SN (Salience network).

networks at the macroscale level by analyzing differences in the their
correspondence to large-scale brain networks (see Table 3).

We can speculate that the more pronounced overlap with a large-
scale network in the control group indicates the hypoactivity of this
network in MDD patients. On the other hand, the prevalence of over-
lap in the MDD group is not normal and indicates hyperactivity or
compensatory activity. Table 3 shows that CEN and SN predominate
in the HC group, while the MDD consensus network has more overlap
with the DMN, which is responsible for internally oriented attention
and self-referencing [65].

3.3. Analysis of optimal community structure

The results of Section 3.1 indicated differences in clustering pro-
cesses between the HC and MDD groups. For a more detailed analysis,
in this section we investigate the distinctions in emerging clusters at
the mesoscale level by detecting optimal community structures in the
consensus networks.

17 non-overlapping communities (clusters) were obtained for the
HC group and 19 — for the MDD group. However, most of them contain
2–3 connections, so we left only relatively large communities with 5
or more connections. This resulted in three communities each for both
the HC and MDD groups (see Fig. 4 and Supplementary Material S3 for
details). One can see that the identified clusters differ both in size (the
clusters in the HC group are significantly larger) and in their constituent
connections. To analyze the differences in clustering between groups at
the level of individual connections, we generated Fig. 5. Here, in the
6 
circulograms, the color indicates the common and unique connections
for the groups for each of the 3 clusters considered (Supplementary
Material S3 details these connections).

Fig. 5 shows that clusters 1 and 3 are significantly larger in the
HC group, while cluster 2 is about the same size in the MDD and HC
groups; however, the composition of connections for this cluster differs
significantly between the groups. Although it is located in occipital and
temporal regions in both groups, it contains more connections from
the limbic system of the brain and the cerebellum in the MDD group.
We can also see that the MDD group has the most disruptions in the
connections of cluster 1. All of the cluster-level effects described above
are reflected in the statistical differences found in the network measures
(Section 3.1).

3.4. Linear discriminant analysis

We employed linear discriminant analysis (LDA) to investigate the
diagnostic power of different network measures (see Table 4). Node-
wise clustering coefficient and full functional connectivity matrices
show the best classification abilities. This result confirms that the main
differences in functional networks between groups are observed in
the degree of network segregation. This suggests that the clustering
coefficient is an effective biomarker for MDD. Note that even the global
clustering coefficient averaged over the whole network has a good
classification power.

4. Discussion

The present study has provided some interesting insights into neural
connectivity patterns associated with MDD. First, we were able to find
significant differences in connectivity measures such as node strength
and clustering coefficient (both higher in HC). Notably, the original av-
erage correlation matrices are almost indistinguishable between groups
(see Fig. 2A). The proposed pipeline based on consensus networks and
analysis of macroscopic network characteristics allows us to distinguish
and highlight subtle differences in the organization of brain networks
caused by the development of MDD (see, e.g., Fig. 2B, which shows
consensus networks with clearly visible differences between HC and
MDD groups).
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Fig. 4. Three largest non-overlapping optimal communities (clusters) for (a) HC and (b) MDD groups. The color indicates different clusters and their constituent connections. Dots
represent nodes in the network, while straight lines depict the connections between them.
Table 4
Classification accuracy with different network measures as features.

Feature vector Accuracy (Mean ± SD) Sensitivity Specificity Precision 𝐹1

Full functional connectivity matrices 0.9195 ± 0.1039 88% 93% 91% 0.89
Node-wise clustering coefficient 0.8762 ± 0.0194 90% 92% 90% 0.90
Global Clustering coefficient 0.77439 ± 0.1510 88% 79% 70% 0.77
Node-wise node strength 0.6158 ± 0.0306 54% 67% 57% 0.55
Node-wise eigenvector centrality 0.4602 ± 0.0255 50% 52% 39% 0.43
Node-wise betweenness centrality 0.5354 ± 0.0324 45% 61% 57% 0.50
Local efficiency 0.4751 ± 0.0196 44% 41% 34% 0.38
Global efficiency 0.7926 ± 0.0085 75% 83% 78% 0.76
Next, the analysis of the consensus networks demonstrated that HC
prevails in CEN and SN, while MDD has bigger overlap with DMN. Fi-
nally, clustering coefficient was identified as the most suitable measure
for classification purposes reaching 90% sensitivity, 92% specificity
and 90% overall precision. The significance of these findings will be
discussed in the following lines.

Decreased node strength is a common observation for patients
suffering from depression, although literature on the topic is limited. In
a study by Jacob et al. [66] using fMRI-based functional networks, they
reported reduced node strength of the right precuneus, a key region
within the DMN, which correlated negatively with higher levels of
maladaptive rumination in MDD patients. Further evidence confirming
the relevance of node strength in understanding MDD, is given by
Huang et al. in their recent article highlighting changes in the delta
wave activity measured through EEG [67]. The authors noted decreased
mean node strength and clustering coefficient in MDD patients, and
in addition improvement following antidepressant therapy was also
reported.

Despite the methodological variance, the findings align with our
results on the impact of depression on neural connectivity. Jacob
et al. [68] also acquired similar results using a different method —
diffusion MRI. The findings demonstrated decreased node strength in
critical areas such as the right hippocampus, right pallidum, and left
precentral and postcentral gyri in MDD patients.
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On the other hand, the study of Liu et al. [69] revealed increased
node degree in the right amygdala and putamen in MDD patients,
which is divergent from our findings. However, the key distinction
from our study is that node degree only measures the quantity of
connections, while in calculating node strength, the intensity of the
connections is also considered. This suggests that while node degree
was increased, it does not necessarily reflect the functional efficacy or
intensity of neural connections.

Clustering coefficient, just like node strength, was significantly
lower in the patients we studied aligning with findings from Xia
et al. [70] and Wu et al. [71]. Wu et al. focused their research on
drug-naive adolescents with a first episode of MDD, which accentuates
clustering coefficient’s potential as an early diagnostic biomarker. Bor-
chardt et al. [72] also observed decreased global clustering coefficient,
indicating less network segregation.

Contrarily, some studies failed to detect significant differences in
the clustering coefficient of MDD patients compared to HC [73,74]. The
discrepancies might be attributed to the small size and heterogeneity of
the samples, and varied methodologies. In their study, He et al. [75] ob-
served a non-significant decrease in CC among patients with depression;
however, when compared to bipolar disorder patients, the difference
was actually significant with bipolar disorder patients exhibiting a
higher mean value. Thus, we can speculate that measuring clustering
coefficient could be potentially used for differential diagnostic purposes
as well.
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Fig. 5. The circulograms illustrate the 3 largest clusters (see also Fig. 4) and their constituent connections. Here, black color denotes the connections common to the HC and MDD
groups, blue color denotes the connections unique to the HC group, and red color denotes the connections unique to the MDD group. Supplementary Material S3 details these
connections.
Further support for the potential of clustering coefficient measures
as biomarkers is given by studies, which suggest that following an-
tidepressant therapy CC tends to decrease (resulting in reduced local
efficiency), while global efficiency may increase [76,77]. This expands
the potential utility of CC, as it could be used to monitor the effects of
antidepressant medication.

The findings of reduced clustering coefficient and global efficiency
suggest that MDD patients’ network organization is both less locally
specialized and less globally integrated. Our research, on the other
hand, did not find any significant difference between the global effi-
ciency of depressed patients and healthy controls. Our interpretation
of this result is that the difference exists in segregation, rather than
integration. The explanation for these distinctive results could be linked
to alternative methodologies, MDD heterogeneity, sample sizes and
co-occurring factors, such as stress and anxiety.

It is worth noting that mean clustering coefficient exerted prominent
level of significance, but it can also be disproportionally influenced by
nodes with exceptionally low or high degrees [59]. We have reached
the understanding that simply observing node statistics at face value
may not offer a comprehensive approach to uncovering innovative
solutions to challenges in psychiatry, such as identifying a reliable
biomarker for diagnosing MDD. Thus, we furthered our analysis, using
the concept of consensus networks that includes functional connections
that are present in the majority of patients or healthy subjects [15].

In our analysis of the consensus networks, HC showed group-specific
nodes, typical for the CEN and SN. These networks are typically as-
sociated with higher-order cognitive functions and the response to
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salient stimuli, respectively [78]. Conversely, significant overlap with
DMN nodes was observed in the consensus networks specific to MDD
patients. The DMN is often involved in self-referential thoughts and
rumination, which are common in depressive states. The greater over-
lap in the DMN in MDD indicates increased activity in this network,
probably due to hypercompensation. Increased activity is related to
increased connectivity.

Alterations in the FC within these networks, as well as between
them, are commonly observed in depressed patients. Meta-analysis of
Kaiser et al. revealed for MDD patients reduced connectivity within the
CEN, hypoconnectivity between the CEN and dorsal attention network
(DAN) and hyperconnectivity within the DMN and between the DMN
and CEN [30]. Also in 2015, in their systematic review, Mulders
et al. [78] determined increased connectivity within the anterior DMN.
These findings resonate with our observations of the correspondence
with the large-scale brain networks (see Section 3.2 and Table 3).

While some studies support the notion that DMN connectivity is
increased in MDD, research over the recent years has yielded more
varied results. In 2019, Yan et al. [79] gathered data from 25 research
groups involving 848 MDD patients, and found that there was actually
decreased DMN functional connectivity. In the 2020 study by Jacob
et al. [66], higher rumination scores in MDD patients (but also in
HC) correlated with decreased overall connectivity within the DMN.
Similarly, Shi et al. [80] reported alterations of the DMN, including de-
creased functional connectivity strength in bilateral posterior cingulate
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cortex, precuneus, bilateral prefrontal cortex, while increased in right
posterior central gyrus, left thalamus, and left temporal lobe.

In their 2021 study, Li et al. found no significant differences in the
DMN’s functional connectivity between treatment-naïve patients and
healthy controls, suggesting that previous abnormalities noted might
be more related to medication effects rather than inherent to MDD
itself. In a systematic review of 2022 by Runia et al. [81], functional
connectivity within the DMN was generally decreased in treatment-
resistant depression. They have also found hyperactivity in some DMN
regions, which could be explained by different cellular mechanisms un-
derlying long-range functional connectivity and local neuronal activity.
However, the 2020 meta-analysis by Tozzi and Williams [82] showed
very heterogeneous findings on functional connectivity within the DMN
in depressed patients. These diverse findings underscore the complexity
of DMN connectivity in MDD, challenging the traditional understanding
that DMN connectivity is increased in MDD patients. Variations in study
methodologies, symptomatology, ethnic backgrounds, and timing likely
contribute to these heterogeneous results.

As previously mentioned, in the present study, clustering coefficient
demonstrated significant classification capabilities, characterized by
high accuracy, specificity, and sensitivity. The collaborative pursuit
of classification biomarkers for mental health conditions like MDD is
essential. In a related study [83] using Multivariate Pattern Analysis
(MVPA), two samples of MDD patients and HCs were analyzed, achiev-
ing classification rates of 91.9% and 86.4% respectively. In this case,
the findings were based on whole-brain functional connectivity. In our
study, full functional connectivity matrices also had high specificity and
sensitivity like as clustering coefficient.

Another research effort [84] identified 20 functional connectivities
through a sparse machine learning algorithm, achieving an accuracy of
83.0%, with similar sensitivity and specificity. This study had relatively
big sample sizes of MDD patients and HCs (𝑛 = 100 each), which
is crucial for the validity of classification algorithms. In 2018, Geng
et al. [85] utilized whole brain connectivity measures with various
classifiers, achieving the highest performance using spectral Dynamic
Causal Modeling (spDCM), which provided an accuracy of 91.30% with
19 effective connection features.

In conclusion, our study contributes to the growing evidence of
the potential development of reliable diagnostic, differential diagnostic,
and therapeutic biomarkers based on network measures derived from
resting state fMRI functional connectivity analysis. Our findings sug-
gest that the approach based on diagnostics of macroscopic network
measures estimated by the consensus network can be very effective for
revealing peculiarities of organization of functional brain networks in
various psychiatric diseases and can serve as an effective method for
searching for network-based biomarkers of brain diseases. For MDD
patients, we have shown that clustering coefficient might be such an
exemplar measure as it achieved the highest classification accuracy as
well.

However, we should admit that our study suffers from several
limitations. First, the sample size although bigger than many previous
single site studies might not be large enough to detect smaller effects.
In addition, depressed patients have been on stable antidepressant
medication which might have influenced our results. The classification
analysis is based on the whole sample of MDD patients and no test in
an independent group has been performed.

Conclusion

Using network theory and a consensus network approach, we iden-
tified and investigated disruptions in the functional brain network seg-
regation in patients with major depressive disorder. At the macroscale
level, this was reflected in higher clustering coefficient and node
strength in healthy controls, as well as differences in correspondence
with large-scale brain networks. The central executive network (CEN)
and the salience network (SN) are predominant in healthy controls,
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whereas MDD patients show greater overlap with the default mode
network (DMN). No differences in network efficiency measures were
found, suggesting that there are no disparities in brain network integra-
tion between the HC and MDD groups. The clustering coefficient was
also found to be an effective diagnostic biomarker for MDD, resulting in
a classification F1-score of 0.9 with LDA classifier. Optimal community
structure analysis allowed us to examine differences in network clusters
between the HC and MDD groups in more detail, at the mesoscale level.
It revealed common and unique functional connections in the main
clusters that distinguish the groups under consideration. In summary,
we can conclude that analyzing the network first at the macroscale level
and then moving to a more detailed analysis at the mesoscale level
allows one to effectively overcome the main problems encountered
when dealing with functional networks — large intersubject variability
and the multiple comparisons problem at the network level.
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