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ABSTRACT

Healthy aging affects structural and neurochemical properties of the human brain neural network. It also changes
the brain functioning via the transformation of neural interactions both within and between functionally distinct
brain areas. The age-related degradation of the brain functioning is evident on the behavioral level in terms
of the decline in reaction time, low ability to execute and control complex motor actions, weak flexibility in
learning new skills. In this paper we apply functional connectivity analysis to reveal the age-related changes in
the integrative brain dynamic during the motor initiation before the dominant hand movements accompanied.
Analyzing the whole-scalp electroencephalography (EEG) signals on the sensor level, we find higher theta-band
coupling in the ipsilateral hemisphere.
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1. INTRODUCTION

Healthy aging affects normal brain functioning due to the disruption of structural links and changes in neuro-
chemical composition of the brain.1 It conditions the degradation of motor and cognitive performance of elderly
people negatively affecting their daily activity and overall life quality. The hallmarks of such impairments are
mostly evident in their behavior: lower ability to control and coordinate complex movements, longer reaction
time (RT), etc.2

As, upper limbs demonstrate highest activity over the human lifespan and are mostly used for complex
motor tasks accomplishment, the age-related degradation of their performance is the most notable.3 While the
differences in motor-related cortical activation under aging directly related are extensively studied and well-
documented, less is known about age-related changes in the motor planning phase and how it affects motor
performance, especially RT. Studying of these mechanisms is of strong interest in terms of deeper understanding
of human’s motor control. To our knowledge, the motor planning processes are also subjected to the age-
related changes as: (i) this process requires activation of higher cognitive functions, i.e., motor memory, motor
embodiment, sensory processing, and sensorimotor integration,4,5 which are known to degrade strongly under
healthy ageing and disease; (ii) the low-frequency (theta, 4-8 Hz) activity subserving the majority of these
functions manifests a considerable age-related transformation - increased theta spectral power in elderly adults
is linked with subjective cognitive decline and suspected dementia.6

In our recent study,7 we uncovered that age-related slow-down of the motor initiation phase largely activates
theta oscillations captured by the central-parental EEG sensors. Besides the activation, interaction between the
brain areas measured by the functional connectivity provides relevant information about the brain’s functioning.8

At the same time, the integrative brain dynamics behind this phenomenon is still of interest. Here, we report
the age-related changes in the brain functional connectivity preceding the fine motor task executed with the
dominant hand.
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2. MATERIALS AND METHODS

Participants and Experimental Paradigm

Twenty healthy right-handed volunteers having no history of nervous diseases or brain trauma participated in the
experiments. They were equally divided in two age groups: Young adults (YA, aged 26.1±5.15 (MEAN±SD), 3
females) and Elderly adults (EA, aged 65±5.69 (MEAN±SD)).

The experiment aimed at revealing the age-related differences in sensorimotor integration process, i.e., a
perception and classification of the audio command followed by motor execution based on the type of command.
The duration of short audio signal (beep) determined whether a participant should execute clenching his/her
right (750 ms) or left (300ms) hand. Audio stimuli were presented sequentially with time interval 10-13 s. A
total number of presented stimuli was 60, including 30 short and 30 long signals uniformly distributed over the
timeline of experimental session.

EEG Acquisition and Preprocessing

We acquired EEG signals using the monopolar registration method (a 10—10 system proposed by the American
Electroencephalographic Society9). We recorded EEG signals with 31 sensors and two reference electrodes
A1 and A2 on the earlobes and a ground electrode N just above the forehead. We used the cup adhesive
Ag/AgCl electrodes placed on the “Tien–20” paste (Weaver and Company, Colorado, USA). The variation
of impedance was controlled during the experiment within a range of 2–5 kOhm. The electroencephalograph
“Encephalan-EEG-19/26” (Medicom MTD company, Taganrog, Russian Federation) with multiple EEG and
two EMG channels performed amplification and analog-to-digital conversion of the recorded signals. The EMG
signals were acquired to verify the correctness of the epochs segmentation. Each experimental session started
and ended with 5 min Eyes Open Resting State recordings.

The raw EEG and EMG signals were sampled at 250 Hz and filtered by a 50–Hz notch filter by embed-
ded hardware-software data acquisition complex. Additionally, raw EEG signals were filtered by the 5th-order
Butterworth filter with cut-off points at 1 Hz and 100 Hz. Eyes blinking and heartbeat artifact removal was
performed by the Independent Component Analysis (ICA).10 The recorded EEG and EMG signals presented
in proper physical units (millivolts) were segmented into two sets of epochs associated with the dominant hand
movements in different age groups. Each epoch was 3 s long, including 2s pre-stimulus (baseline) activity and 1s
post-stimulus activity. Data was then inspected manually and corrected for remaining artifacts. Epochs which
we failed to correct manually mostly due to the strong muscle artifacts were rejected. Finally, each set contained
15 corrected epochs, which was equal to the minimal number of the artifact-free epochs over all participants.

All preprocessing steps including filtering, artifact removal and epoching were performed using MNE package
(ver. 0.20.0) for Python 3.7.11

Connectivity Analysis

We considered functional connectivity in terms of established relationships between the band-pass filtered EEG
signals.12 With the aim of evaluating functional connectivity on the sensor level, we used phase lag index
(PLI),13 which was defined in frequency domain as

PLIi,j(f, t) = |〈sign(=[Si,j(f, t)])〉|, (1)

where i, j were the indices of EEG sensors between which functional connectivity was assessed, Si,j(f, t) was
the cross-spectral density and =[•] defined imaginary part of the complex-valued variable. Theta-band coupling
which was of special interest in terms of the study was estimated by averaging PLI(f, t) within a frequency band
[4, 8] Hz:

PLIθi,j(t) =
1

fmax − fmin

∫ fmax=8Hz

fmin=4Hz

|〈sign(=[Si,j(f, t)])〉|. (2)

Using 2 we filled the weight tensor W ′
i,j,k = PLIθi,j(tk) representing a time evolution the weighted connectivity

for each epoch. Thus, each subject was characterized by the tensor Wi,j,k averaged over all 15 epochs. Employing
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Figure 1. Statistical inference of significant between-group differences in node strength via non-parametric
cluster test Toporgaphic plot of cluster-averaged F -statistic (A) and cluster-averaged evolution of the node strength
(mean±SD, B). White dots in the topographic plot indicate EEG sensors demonstrating significant effect. Shading
indicate the time interval characterized by significant between-group difference.

graph-theoretical approach we quantified each EEG sensor, i.e., a node of the weighted tensor Wi,j,k, with the
measure of node strength defined as a sum of the coupling weights between current node and all the graph nodes:

Di(tk) =

N=31∑
j=1

Wi,j,k. (3)

The node strength Di is an extension of the node degree measure for the case of a weighted graph which
also aims at identification of the most influential graph nodes.14 To infer statistically significant changes in the
functional connectivity between age groups YA and EA during the process of sensorimotor integration we tested
the difference in Di(t) in spatiotemporal domain via non-parametric cluster test with r = 1024 permutations
and pairwise comparison threshold Ftr(1, 18) = 8.285 corresponding to the significance level p = 0.01.15

3. RESULTS AND DISCUSSION

First, we evaluated the effect of between-group node strength difference in spatiotemporal domain. Non-
parametric cluster test did not show any significant cluster with p < 0.05. However, it revealed a spatiotemporal
cluster covering left frontal and midline EEG sensors (Fig. 1A) which occurred immediately after audio signal
onset (80-136 ms, Fig. 1B) and achieved the level of significance p = 0.07. Despite, estimated cluster-level p-value
was slightly greater than 0.05, it showed a tendency to demonstrate statistically significant between-group differ-
ences that should be taken into account. One of the possible explanations of such observation was small sample
size collected during experimental study. Post-hoc comparison via t-test for independent samples showed that EA
subjects demonstrated significantly greater (t = 4.967, p < 0.001) cluster-averaged node strength (0.222±0.018,
mean±SD) compared with YA subjects (0.189±0.009, mean±SD). We could interpret these observations as a
meaning that sensorimotor integration in EA subjects required stronger interactions within functional cortical
network with dominating role of frontal and midline EEG sensors as opposed to YA participants.

Second, we took a closer look at the functional connectivity links related with the nodes in Fig. 1A. With this
aim, we averaged tensors Wi,j,k over the time interval 80-136 ms and considered only the links between these
nodes and all other nodes of the network (Fig. 2A,B for YA and EA respectively). Afterwards, we considered
only 15% of the strongest links within those subgraphs, constructed their adjacency matrices (Fig. 2C,D) and
visualized them on a scalp (Fig. 2E,F). It is seen, that sensorimotor integration activates similar links in both
age groups: bilateral frontal-temporal-parietal connections (F3-T7,F3-P7,FC4-TP8),and midline links between
Fz, FCz and Cz sensors. These links could be interpreted as activation of audio information processing circuits
and accessing working memory as parts of audio signal classification. However, EA subjects demonstrated large
involvement of the coupling between right central, right temporal and midline sensors (Fz-FC4, Fz-TP8,Fz-
Cp4,FCz-Cp4FC4-TP8). Stronger activation of the interaction between these sensors could be interpreted as
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Figure 2. Age-related difference in functional connectivity. Cluster-averaged weight matrices Wi,j for YA (A) and
EA (B). Corresponding adjacency matrices Ai,j obtained by removing 85% links from Wi,j for YA (C) and EA (D).
Structure of functional connectivity visualized on the scalp from Ai,j for YA (E) and EA (F)

recruitment of additional brain areas for audio signal processing. It could be also treated as an increased access
to the working memory in EA in an attempt to a correct classification of the presented stimulus.

4. CONCLUSION

Elderly adults exhibited greater activation of the theta-band cortical interactions immediately after the presenta-
tion of audio stimulus. We demonstrated that left frontal and midline EEG sensors played a leading role in these
overactivated functional links. It was also shown that besides bilateral frontal-temporal-parietal links common
for both age groups, elderly adult subjects demonstrated increased coupling between right central, temporal
and midline sensors. Taken together, our results on functional interactions within cortical network suggest the
utilization of more demanding sensorimotor integration processes in elderly adults.
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