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ABSTRACT

When creating motor imagery brain-computer interfaces (BCI), there is a problem with the accuracy of deter-
mining which limb made the movement. The accuracy of the classifiers is no more than 80-85%. In this work,
we examined this problem from the point of view of the well-known phenomenon of lateralization during motor
movements. Several different algrorithms were used to investigate proportion of contralateralization and ipsilat-
eralization based on event related desynchronization/synchronization (ERD/ERS) calculations using EEG data
gathered throughout motor function related experiment.
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1. INTRODUCTION

Brain-computer interfacing is a technology that uses a non-muscular way to interact with the world.1,2 The
development of brain-computer interfaces is an urgent problem in neuroscience.3–8 Since decoding brain signals
is a complex task, such technologies require high computing power.6,9–12 That is why these technologies started
to emerge only 30 years ago. In recent years, several studies on brain-computer interface (BCI) topics only tend
to increase.13,14 BCI captures the electrical signals directly from the brain and forwards them into electronic
devices for further analysis and interpretation. Scientists argue it could potentially become a treatment for
people with disabilities and could be used to operate the prostheses.15–19 It can also be used in an educational
environment, as it increases the efficiency of acquiring knowledge.20–22 One of the fundamental challenges in
adopting BCI is the lack of precision of the classifiers (80-85%). That is why a lot of studies on sensorimotor
BCI are aimed at solving this problem.23–27 We hypothesize that this problem is more fundamental than we
think and could be linked to the appearance of a spontaneous ipsilateral motor pathway.

In this paper, we investigate the motor pathways using the phenomena of event related desynchronization
(ERD) in alpha band. This events in primary motor cortex are commonly considered as the biomarkers of
motor function activation.28,29 We have developed several easily interpretable algorithms for ERD detection to
determine occurrences of contralateral and ipsilateral pathways of motor function activation and compared their
proportion to accuracy of sensorimotor BCI.

2. METHODS

Experimental procedure: 15 healthy volunteers participated in the experiment. Each of them sat in a comfortable
chair in front of the display and performed either right or left-hand clenching, according to the task on the display.
Each trial consisted of recording background activity before action during 5 seconds and activity during the action
itself during 5 seconds correspondingly. Before the experiment, we recorded rest-state activity for 30 seconds.

EEG data were recorded using a 48-channel NVX-52 amplifier. 32 standard Ag/AgCl electrodes placed
according to the international 10-10 system. EEG was digitized with a signal sampling frequency of 1 kHz and
filtered in the frequency range 1-70Hz, and a 50Hz notch filter was applied. We used independent component
analysis (ICA) for eys blinking and heartbeat artifacts removal procedure. The remaining artifacts were removed
manually.
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Figure 1: The illustration of KDE algorithm work

Since we were interested in event-related synchronization/desynchronization events, we applied wavelet trans-
form to the raw signal in order to get the time-frequency representation of the signal. We chose wavelet transform
over Fourier transform due to higher time-frequency resolution.30 The number of cycles was sticked to the fre-
quency range. For the frequency-time analysis, we have chosen 8Hz-14Hz frequencies, since they cover the alpha
band and mu band, in particular. This frequency band always arises in motor function activation studies.31–33

We calculated mean energy for the selected band and performed percent correction using recorded rest-state
data. Our next step was to localize ERD in time and estimate its power.

We have implemented two different algorithms for ERD time localization and estimation of its value. The
main idea of the kernel density estimation (KDE) algorithm is adaptive thresholding. To find the needed
threshold, we need to accomplish several steps of preprocessing. The essential step is the signal probability
distribution function estimation. As the name of the algorithm implies, we used a neighbor-based approach,
namely kernel density estimation (KDE).34 Despite the fact that the most popular kernel for use in KDE is the
Gaussian kernel,35 we rejected it due to the problem with high smoothing. Psychophysiological data occurs to
have high variance, therefore we needed a more sensitive tool. Our final choice was Epanechnikov kernel36 since
it is optimal in a mean square error sense.37 We have manually fine-tuned kernel parameters on different EEG
datasets related to motor function activation.
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Using the estimated PDF function we were finally able to find a threshold for our signal. To do so, we
calculated the local maxima of PDF. The rationale for doing so lies in the idea, that ERD will last longer than
random decline caused by fluctuations of the signal. The needed threshold will correspond to the first local
maxima of the PDF. This threshold will indicate, which parts of the signal correspond to ERD (Fig. 1). We pick
the first appropriate part of the time series, calculate the meantime and value of it. These values will depict
ERD for a single trial.
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Figure 2: The illustration of local minima algorithm work

The mechanism for the second algorithm is simpler. First, we apply filtering using a forward-moving average
to reduce the effect of the high variance of the signal. Second, we find all local minima of the filtered signal. We
reject all time points, which were found in the interval of the first 10 ms. Then, we normalize the corresponding
values of these points by adding the minimal value of the points. We reject all points, which corresponding
values are higher than 0.95 of the mean value of selected points. This step is needed to reduce the false alarm
rate and remove candidate points corresponding to random fluctuations. Then, we pick the earliest candidate
point and reject others. If there are no more candidate points for ERD, we pick the global minima on the filtered
signal. After that step, we search for global minima of the original time series in the time region near the selected
candidate point (Fig. 2). The size of the region is defined as 1 s.

Using the algorithms listed above, we were finally able to calculate lateralization proportion. We used ERD
estimated value in channels F3, F4 and C3, C4 for premotor and motor areas, respectively (Fig. 3). For each
channel pair, a proportion of ERD values was calculated, C4/C3 and F4/F3 for the right hand and vice versa
for the left hand. We have initially labeled time series for each channel based on the following condition: if the
proportion exceeds 1.05 (5%), the activity during this trial is labeled as low, if the proportion is below 0.95, then
it is labeled as high and the corner case we label as middle. Each trial was marked as bilateral if each channel
has the same label, or contralateral if the left channel has been labeled as low unlike the right channel (for the
right-hand motion, vice versa for the left hand). The corner case was labeled as ipsilateral.

3. RESULTS

Results reveal not such great difference between right and left hand, around 70-80% and 65-75% of contralateral-
bilateral activity in right and left hand, correspondingly (Fig. 4). This may explain errors in BCI hand classi-
fication. Showed phenomena needs further investigation. Besides that, results strongly depend on introduced
algorithms parameters. They require further fine tuning.
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Figure 3: Channel mapping. Orange and blue channels represent premotor and motor area respectively
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Figure 4: Proportion of contralateral-bilateral pathways

4. CONCLUSION

Using proposed algorithms we have revealed that the portion of contralateral and bilateral pathways of motor
function activation is consistent with BCI classification error. No abnormalities related to lateralization assymetry
was found, which is also consistent with the other studies in the field. Based on the results obtained, we can
assume that the pattern of motor area activation is inconstant and can vary, which affects the accuracy of the
classification. These variations in the patterns may be caused by a deep mechanism of movement execution,
which needs further investigation.
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[23] Vidaurre, C., Murguialday, A. R., Haufe, S., Gómez, M., Müller, K.-R., and Nikulin, V., “Enhancing
sensorimotor BCI performance with assistive afferent activity: An online evaluation,” NeuroImage 199,
375–386 (Oct. 2019).

[24] Shan, H., Xu, H., Zhu, S., and He, B., “A novel channel selection method for optimal classification in
different motor imagery BCI paradigms,” BioMedical Engineering OnLine 14 (Oct. 2015).
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