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Abstract
Currently, no specific treatments are available for Alzheimer's disease (AD). Mild
cognitive impairment (MCI), the preclinical stage of AD, has a high possibility of
reversing symptoms through neural regulation. A state dynamics model for single
brain regions was developed to simulate blood oxygen level-dependent signals in a
patient with early mild cognitive impairment. Subsequently, the analysis of func-
tional connections was used to comprehensively consider multiple complex
network centralities to locate the intervention targets, and a multiple brain region
collaborative control scheme was designed. Finally, the reliability and effectiveness
of the intervention were verified at the brain region and subnetwork levels. This
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technique provides a basis for future clinical diagnosis and treatment of AD and
MCI.
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1 | INTRODUCTION

Alzheimer's disease (AD) is a heterogeneous disease with an
unclear etiology, and currently, no specific AD treatments
are available. Mild cognitive impairment (MCI), the early
stage of AD, can be divided into early MCI (EMCI) and late
MCI (LMCI).[1] Patients with MCI experience mild cogni-
tive decline, but their daily activities are not substantially
affected. Therefore, these patients often control and inhibit
the progression of MCI with drug therapy, traditional Chi-
nese medicine,[2] cognitive training,[3] and external stimu-
lation therapy.[4]

The presentation of MCI varies greatly among patients;
therefore, patients' treatment plans must be customized for
their cognitive recovery. Successful recovery is based on a
full understanding of the brain. Resting-state magnetic
functional resonance imaging (fMRI)[5] and diffusion
tensor imaging (DTI)[6] can capture information on brain
functional networks and structural networks, providing
basic tools for studying brain diseases; in addition, neural
computational modeling provides an effective method to
achieve a complete understanding of the brain. Several
data-driven models have been proposed to describe tem-
poral state changes in specific brain regions and the whole
brain. Deco[7] and Demirtas et al.[8] used the normal form
of a Hopf bifurcation to simulate the state changes of a
single brain node and analyzed the changes in resting-state
functional connectivity (FC) in the whole brain during
AD progression. The dynamic causal model (DCM), a
directed model, can describe differences in neuronal sig-
nals over time, providing a powerful and intuitive analyt-
ical tool for functional network simulation based on
structural networks.[9,10]

Most existing control schemes use state reproduction to
adjust the system state by directly adjusting the parameter
values in the model.[11] The control parameters cannot be
automatically adjusted in real-time according to the status of
the nodes and the system. In addition, because all nodes in
the brain are treated as control objects without differences,
low-level trauma cannot be achieved. Therefore, to control
the human brain with minimal damage and high flexibility,
the adaptive pinning control scheme can be used to improve
brain FC in the resting state and enhance cognitive ability in
patients.

Sufficient and convincing cognitive recovery criteria
play a key role in cognitive recovery. Depending on the
focus of the study, FC and functional connectivity dynamics
are often selected to measure the brain state.[12,13] The

internal and external connections of functional subnetworks
have a substantial effect on individual cognitive perfor-
mance.[14,15,16] For example, the default mode network
(DMN) is composed of the posterior cingulate cortex, pre-
cuneus, medial prefrontal cortex, inferior parietal lobe,
bilateral temporal cortex, and other brain regions. It is
believed to be closely related to the functions of the human
brain, such as the monitoring of the internal and external
environment, emotional processing, introspection, and
episodic memory retrieval.[17,18] Therefore, a comprehensive
analysis of the connectivity inside and outside the subnet-
work and FC can be used to evaluate the effect of cognitive
recovery programs at multiple levels.

To explore the brain network mechanism in patients with
MCI and AD and provide guidance for intervention targets
of future clinical interventions, this study simulated blood
oxygen level-dependent (BOLD) signals in patients with
EMCI via the DCM, designed a multiple brain region
collaborative adaptive intervention scheme, and explored the
recovery effect at the brain region and subnetwork FC levels.
The patient-specific cognitive recovery framework is shown
in Figure 1 and the specific contributions of this paper are as
follows:

1. Through DCM deformation, we accurately simulated the
BOLD signal in each brain region of individuals with
EMCI to capture the neural activity and disease evolution
of each patient.

Key points

What is already known about this topic?
� Preprocessing various structural and neuro-
imaging data can reveal the structure of the brain
and functional network as well as the related
functional activity information in mild cognitive
impairment (MCI) patients.

What does this study add?
� According to a precise simulation of individual
brain region activities, the proposed method of
coordinated adaptive control of multiple brain
regions could restore cognitive ability in MCI
patients by positioning a pinning target in the
deep brain, providing theoretical guidance for
personalized clinical neuroregulation.
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2. Pinning nodes were determined according to multiple
centralities of the complex network, and the average FC
difference between the control group and the individual
was calculated using a sliding window at multiple steps.
Subsequently, the controlled time periods were selected
to design an adaptive multiple brain region collaborative
control scheme to provide a method for future clinical
interventions for specific patient conditions.

3. The cognitive recovery effect was evaluated at two
levels: the brain area and the functional subnetwork-
related connections. The stronger and weaker connec-
tions between individuals and the control groups were
compared at the brain area level, and the distribution of
inward and outward connections was compared at the
functional subnetwork level. The multilevel FC evalua-
tion scheme may provide ideas for patients' cognitive
ability evaluation based on functional imaging.

The remainder of this paper is organized as follows:
Section 2 introduces the data collection and processing
process, the computational model and the multiple brain
region collaborative control scheme, and the other materials
and methods required for the experiment. The theoretical
simulation results of the control scheme are provided in

Sections 3 and 4, which demonstrate the effectiveness of the
proposed strategy and discuss the results, respectively.

2 | MATERIAL AND METHODS

2.1 | Participants

A 75-year-old female and an 80-year-old male with EMCI
were selected as participants. For each participant, two
control groups of 10 healthy individuals aged 70–86 were
created. All patients underwent clinical symptom examina-
tions, neuropsychological tests, neuroimaging examinations,
and biomarker detection. The first and second control groups
for the female participant had a male-to-female ratio of 1:1
and 0:1, respectively, and the male participant's control
groups had a male-to-female ratio of 1:1 and 1:0. Detailed
data are shown in Table 1, which were obtained from the
Alzheimer’s Disease Neuroimaging Initiative Database
(ADNI, https://adni.loni.usc.edu). All participants underwent
resting-state fMRI (BOLD sensitive, T2*-weighted, TR
3000 ms, TE 30 ms, FA 90,197 slices [3.4 mm]), structural
magnetic resonance imaging, and DTI (slice thickness 2 mm,
TE 56 ms, TR 7200 ms, 54 directions, b = 1000 s = mm2).

F I G U R E 1 Patient-specific cognitive recovery framework based on multiple brain region collaboration. (A) Image preprocessing. FMRI data were
processed by the DPARSF to obtain FC and the BOLD signals of each brain region. DTI and T1 images were processed by MRtrix3 to obtain SCs. The FC
and BOLD signals were simulated by substituting SC into the model and adjusting the specific parameters Pij and σ. (B) Design and stability proof of the
adaptive pinning control scheme. (C) Pinning node and time segment selection strategy. The pinning nodes were selected on the basis of the centralities of
the complex network, and the potential impact of the number of pinning nodes was considered. A sliding window was used, and an algorithm was designed
to calculate the difference between FCs to select the target time segment. (D) Theoretical recovery effect. The effect was discussed from the perspectives of
FC strength and subnetwork connectivity distribution. BOLD, blood oxygen level-dependent; DPARSF, data processing assistant for resting-state fMRI;
DTI, diffusion tensor imaging; FC, functional connectivity; fMRI, functional magnetic resonance imaging; NC, normal control; SC, structural connectivity.
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2.2 | Image acquisition and preprocessing

Statistical parametric mapping software with the Data
Processing Assistant for Resting-State fMRI[19] software
package (http://rfmri.org/content/dparsf) was used to pre-
process the fMRI data. First, the data were converted
from Digital Imaging and Communications in Medicine
format to Neuroimaging Informatics Technology Initiative
format, and the data from the first 10 time points for each
object were discarded. Subsequently, hierarchical correc-
tion and head movement correction were performed, and
the data were registered in the same space for down-
sampling. Interfering signals were removed from the
time series of each voxel to reduce the effect of non-
neuronal fluctuations. Bandpass filtering was used to fil-
ter the time series from 0.04 to 0.07 Hz, and the brain
was divided into 90 brain regions according to the auto-
mated anatomical labeling (AAL) template. Finally, the
time series of all brain regions of each object were ob-
tained by averaging the time series of all voxels in a
specific region of interest.

In MRtrix3 (https://www.mrtrix.org/) software, the dwi-
denoise function was used to denoise the data, and the

dwifslPreproc function was used to preprocess them.[20] The
operations performed were susceptibility-induced distortion,
eddying current-induced distortion, and motion effect. After
b0 was extracted, the mask was generated, the image was
standardized, and the T1 image was preprocessed and
registered with the DTI image. The dwi2response, dwi2fod,
and tckgen functions were used to track the whole brain
fiber, and then sift correction was performed. Finally, a
90 � 90 structural connection matrix was estimated ac-
cording to the number of streamlines connecting each pair of
regions.

2.3 | Computational model design for
single-brain BOLD signal simulation

The DCM can adjust the prediction results of the Bayesian
model and realize the conversion from neural activity to
BOLD signals by establishing an interaction model of neural
activity in the brain and a hemodynamic model of each brain
region so that the differential equation of neuronal activity
fits the brain imaging data. Erik et al.[21] used the dynamic
causal modeling neuronal state equation to simulate the
transmission process of neural activity along the structural
connections of the nervous system. The model they derived
is as follows:

dxi
dt
¼ f ðx; v; θÞ þ σ

XN

j¼1
kij xi − xj
� �

; ð1Þ

where N = 90 is the number of the brain regions; xi and xj
represent the ith and jth signals, respectively; σ is the
diffusion coefficient, which controls the rate at which
neuronal fluctuations spread to neighboring areas; kij is the
structural connection strength of the brain regions, which can
be obtained by image processing; and v and θ represent the
stimulus parameter and hyperparameter, respectively.

Assuming first-order interactions, Equation (1) can be
linearized to Equation (2), which can be written as follows:

dxi
dt
¼
XN

j¼1
pijxjðtÞ þ σ

XN

j¼1
kij xiðtÞ − xjðtÞ
� �

þ ωðiÞ; ð2Þ

for which a detailed explanation of the parameters can be
found in Ref. [21].

A. Design and stability analysis of adaptive pinning
control scheme.

The controlled network is described as follows:

dxi
dt
¼ f ðx; v; θÞ þ σ

XN

j¼1
kij xiðtÞ − xjðtÞ
� �

þ uiðtÞ; ð3Þ

where ui(t) is the control strength of the ith node. The
adaptive pinning control scheme was chosen as the control
scheme; ui(t) is defined as:

TA B L E 1 Participant demographics.

Subject Group Sex Age

068_S_2315 EMCI F 78

002_S_1261 NC F 82

002_S_1280 NC F 81

002_S_6007 NC F 77

011_S_6367 NC F 82

014_S_6988 NC F 83

002_S_4213 NC F 84

003_S_4288 NC F 78

011_S_4105 NC F 77

014_S_4576 NC F 76

014_S_6148 NC F 82

002_S_4473 EMCI M 80

002_S_4225 NC M 77

003_S_4350 NC M 81

011_S_4278 NC M 83

014_S_6437 NC M 79

032_S_6294 NC M 82

002_S_6456 NC M 86

003_S_6259 NC M 71

003_S_6307 NC M 76

003_S_6644 NC M 86

032_S_6717 NC M 75
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uiðtÞ ¼
ciðtÞ siðtÞ − xiðtÞð Þ; 1 ≤ i ≤ l;

0; l þ 1 < i ≤ N :

(

ð4Þ

where l is the number of the pinning nodes, si(t) is the
desired state of the ith brain region, and ci(t) is the control
gain. The error variable of the ith node can be defined as
ei(t) = xi(t) − si(t). Then, the error dynamic formula can be
written as

The control gain ci(t) is defined as

_ciðtÞ ¼ kiðxiðtÞ − siðtÞÞT xiðtÞ − siðtÞð Þ; ð6Þ

The following assumption was needed to obtain our
results.

Assumption 1. Assume that the nonlinear function f (·)
satisfies the Lipschitz condition, that is, for any time t, there
is a nonnegative constant α:

k f xiðtÞð Þ − f siðtÞð Þk ≤αkxiðtÞ − siðtÞk; ð7Þ

Remark 1. Many classical chaotic function systems, such as
the Lorenz system, Chen system, and Chua system, satisfy
the Lipschiz condition, and the neural activity of the human
brain also satisfies the chaotic characteristics, so it is
assumed that the Lipschiz condition is also satisfied.

Considering that
PN

j¼1
kij xiðtÞ − xjðtÞ
� �

can be derived and

reduced to
PN

j¼1
lijxjðtÞ,[21] where lij is the Laplacian matrix.

Proof. The Lyapunov functional candidate is defined as

VðtÞ ¼
1
2
XN

i¼1
eiðtÞTeiðtÞ þ

1
2
XN

i¼1

ciðtÞ − mð Þ
2

ki
; ð8Þ

where m is a sufficiently large normal number. Differenti-
ating V(t) gives:

_eiðtÞ ¼ f xiðtÞ; tð Þ − f siðtÞ; tð Þ þ σ
XN

j¼1
kij xiðtÞ − xjðtÞ
� �

þ ciðsiðtÞ − xiðtÞÞ

i¼ 1; 2; 3; :::; l;

_eiðtÞ ¼ f xiðtÞ; tð Þ − f siðtÞ; tð Þ þ σ
XN

j¼1
kij xiðtÞ − xjðtÞ
� �

i¼ l þ 1; l þ 2; :::;N :

8
>>>>>>>><

>>>>>>>>:

ð5Þ

_ViðtÞ ¼
XN

i¼1
eiðtÞTðf xiðtÞ; tÞ − f siðtÞ; tÞð Þð þ σ

XN

i¼1

XN

j¼1
kijeiðtÞT xiðtÞ − xjðtÞ

� �

þ
XN

i¼1
ciðtÞeiðtÞT siðtÞ − xiðtÞð Þ þ

Xl

i¼1
ciðtÞ − mð ÞeiðtÞTeiðtÞ

¼
XN

i¼1
eiðtÞTðf xiðtÞ; tÞ − f siðtÞ;ð tð ÞÞ þ σ

XN

i¼1

XN

j¼1
kijeiðtÞT xiðtÞ − xjðtÞ

� �

−m
Xl

i¼1
eiðtÞTeiðtÞ

≤ α
XN

i¼1
eiðtÞTeiðtÞ þ σ

XN

i¼1

XN

j¼1
kijeiðtÞT xiðtÞ − xjðtÞ

� �
− m

Xl

i¼1
eiðtÞTeiðtÞ

≤ α
XN

i¼1
eiðtÞTeiðtÞ þ σ

XN

i¼1

XN

j¼1
lijeiðtÞT xiðtÞ − xjðtÞ

� �
− m

Xl

i¼1
eiðtÞTeiðtÞ

≤ αeðtÞTeðtÞ þ σLmineðtÞTeðtÞ − meðtÞTeðtÞ

≤ αþ σLmin − mð ÞeðtÞTeðtÞ

WANG ET AL. - 5 of 16

 28353153, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/brx2.25 by Im

m
anuel K

ant B
altic Federal U

niversity, W
iley O

nline L
ibrary on [22/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



where Lmin = 0 is the smallest eigenvalue of L. According to
the above, it is determined that α − m < 0 is the sufficient
condition for _VðtÞ ≤ 0. Because the adaptive controller can
automatically update the control factor, the controller
parameter setting depends only on the dynamic parameters
of each brain node.

2.4 | Preliminary preparation of the
theoretical experiment

According to the above, the brain state models of the male
and the female participants were obtained, and theoretical
experiments were carried out to test the cognitive recovery
effect of the control scheme. To improve the interpretability
and ensure the simulation effect, some of the preliminary
preparation of the experiment is described, including the
selection of the controlled time series pairs, the determina-
tion of the pinning nodes, and the design of the evaluation
criteria for functional recovery.

2.4.1 | Selection scheme of controlled BOLD
time series pairs

The ADNI database does not record information about
specific individuals over a long period, so the male and
female participants in the EMCI stage were selected
without the multimodal neuroimages collected during
normal aging. Therefore, three groups of 10 NC partici-
pants in the same age range were selected (i.e., 5 males and
5 females, 10 males and 10 females), and their BOLD
signals were averaged to obtain the theoretical target state
of the BOLD signals in the three groups in the normal
state. Because of the differences in the external environ-
ment and the human brain state, it is difficult to directly
regard the BOLD signals based on the group average as the
target state. Furthermore, the BOLD signal evolution of
patients with EMCI cannot be fully explained by the
average of the control group because the average initial
brain state of the control group is not consistent with that
of the patients. Furthermore, the BOLD signals of the
EMCI patients cannot be controlled to transform them into
a state equal to the average state of the NC group. The key
problem is that the initial brain state represented by the
BOLD time series is not matched between subjects and
controls. In this study, to apply the control to precise time
periods and measure the control effect, a difference het-
erogeneity algorithm was designed to locate the initial lo-
cus of the controlled time series in the patients with EMCI
and the control groups.

First, we adopted a sliding window approach to cut
the BOLD signals of the EMCI patient and averaged the
NC, and the time segment length was set to 40 time points.
To specify the optimal sampling interval, the sampling
interval d was set to 5, 10, 15, and 20 time points
sequentially.

Afterward, the Pearson correlation coefficient between
each brain region was calculated on the basis of the BOLD
signals within each time segment to obtain the FC. The FC
of the averaged NC and the patient with EMCI (FC NC and
FC EMCI, respectively) were processed with 0.5 as the
threshold. If the correlation coefficient was >0.5, it was
adjusted to 1; if it was < −0.5, it was adjusted to −1; and the
rest were set to 0. The processed FC NC and FC EMCI were
compared, and if the values at the same position (the position
range was between [0, 0] and [90, 90]) were different, the
difference degree was increased by 1, otherwise it was not
changed. By traversing, the difference degree between the
FCs was obtained.

2.4.2 | Selection scheme of pinning nodes

The location of the pinning node determines the efficiency
and effect of the control. The centrality of a complex
network can locate the central nodes in the network. Hence,
selecting pinning nodes allows high efficiency and low po-
wer consumption. According to the structural connection
network of the patient obtained by preprocessing, three
types of centrality scores of each node in the complex
network were comprehensively considered: degree central-
ity, betweenness centrality, and closeness centrality.

Degree centrality is the most direct measure to describe
node centrality in network analysis.[22] The larger the degree
of a node, the more important the node is in the network. The
degree of the ith node is as follows:

CDðiÞ ¼
ki

N − 1
; ð10Þ

where ki is the number of existing edges connected to node i,
and N − 1 represents the number of edges at which node i is
connected to other nodes.

Betweenness centrality refers to the proportion of the
number of paths passing through the node in the total
number of shortest paths in the network, which reflects the
influence of the node in the entire network. A node with a
higher value of betweenness centrality takes on heavier in-
formation transmission tasks in the network:

CBðiÞ ¼
X

j<k

gikðiÞ
gik

; ð11Þ

where gik(i) represents the paths between j and k that pass
through i, and gik represents all paths between j and k. It can
be normalized as follows:

C’
BðiÞ ¼

CBðiÞ
ðn − 1Þðn − 2Þ=2

; ð12Þ

where (n − 1)(n − 2)/2 is the number of pairs of vertices,
excluding the vertex itself.
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Closeness centrality is used to measure node importance,
which depends on the inverse distance to other vertices.[23]

The node with the largest closeness centrality value is the
topology center of the entire network, which is defined as
follows:

CCðiÞ ¼
XN

j¼1
dði; jÞ

" #−1

: ð13Þ

It can also be normalized as

C’
CðiÞ ¼ CCðiÞð Þ:ðN − 1Þ; ð14Þ

where d(i, j) represents the distance between node i and node
j, and N is the number of nodes in the network.

2.4.3 | Functional recovery assessment criteria

The FC changes in the brain regions and subnetworks were
used to measure the effectiveness of the experiment regarding
the restoration of brain cognitive function; quantitative results
were determined by the statistical analysis method.

The direct control object of the intervention scheme was
the BOLD signals in the whole brain. To establish the as-
sociation with function, Pearson correlation analysis was
conducted on the BOLD signal before and after the control,
and the changes in the functionally connected brain network
were obtained. The purpose of the control was to improve
the strength of the weak functional connections between
brain regions closely related to cognition and to enhance the
information communication between brain regions by
maintaining the original specific dominant connections.
Thus, brain-wide dominance and disadvantage connections
before and after the intervention are also considered.

Increasingly, cognitive neuroresearchers are shifting
their focus from isolated brain regions to larger brain
networks. According to different research backgrounds and
purposes, different brain network classification methods
have been used. In this study, following the division of the
brain functional network proposed by Yeo,[24] the whole
brain was divided into seven subnetworks: the visual
network (VN), Somatic motor network, dorsal attention
network (DAN), ventral attention network (VAN), limbic
network (LN), control network (CN), and DMN. The
DAN, VAN, CN, DMN, and LN are strongly correlated
with human cognitive ability; therefore, only the above
subnetworks were analyzed.[25,26] The research was carried
out from two aspects: FC changes within and between
subnetworks. Within the subnetwork, the distribution of
functional connection strength in brain regions before and
after control was compared. More functional connections
correspond to more frequent and easier information ex-
change. Therefore, the number of functional connec-
tions related to brain regions that play a key role in
external information exchange was also used as one of the
criteria.

3 | RESULTS

3.1 | Model-based BOLD signal simulation

The BOLD signals of two EMCI patients are simulated ac-
cording to the model (3). To select the diffusion coefficient
σ, we set the step size 0.05 to fit the experiential signal
within the range of [0, 1] and choose 0.15 and 0.95 as the
best-fitting values of the diffusion coefficient for the female
and the male participants, respectively. The fitting effect is
shown in Figure 2.

F I G U R E 2 The fitting effect of the model to the real signals; brain regions 1, 26, 51, and 76 are represented from top to bottom. (A) Female
participant. (B) Male participant.
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3.2 | Theoretical control effect

In this section, the selection results of the pinning nodes
and the controlled time series pairs are shown first, and
then the theoretical recovery effect is evaluated from the
aspects of FC connection strength and subnetwork
distribution.

3.2.1 | Controlled time series pairs selection

Considering that the external environment and internal
brain activity are difficult to replicate, we first selected
time segments by comparing the difference between the
FC NC and FC EMCI before conducting the control
experiment.

For each value of d, we calculated the difference degree
and obtained the corresponding difference degree maps.
The length of the controlled time segment was set to 100
time points because of the excellent performance in simu-
lating the state values for the first 100 time points. After
sliding window processing, when d = 5, 10, 15, and 20, the
corresponding difference degree map sizes were 13 � 29,
7 � 15, 5 � 10, and 4 � 8. The male and female par-
ticipants corresponded to two control groups, so each had
two controlled time series pairs. Figure 3 shows the se-
lection process of the optimal controlled time series pair of
the female participants when the male-to-female ratio of
the control group was set to 1:1. In this case, the sampling
interval d was set to 20, each element in the matrix rep-
resented the functional connection difference of the BOLD
series pairs between the female participant and the control
group, and a smaller difference value represented the more
similar brain state. The minimum value in the matrix
appeared at position [1, 4]. Therefore, the corresponding
empirical BOLD signals at time points 61–100 were
selected as the controlled object, and the averaged NC
signals at time points 101–140 were taken as the target
state. Table 2 summarizes the specific controlled time series
pairs in the four control settings.

3.2.2 | Pinning node location

The whole brain nodes were sorted in descending order ac-
cording to the three centrality attributes of the structural
networks. The brain regions corresponding to the top 10
network nodes with single attributes of the female and male
participants are shown in Tables 3 and 4, respectively. The
locations of each region in the whole brain are shown in
Figure 4.[27] For the female participant, the central region
was generally the same under several attributes, whereas the
lentiform putamen of the male participant was in the optimal
position. The reason may be that the lentiform nucleus is a
part of the striatum, which is the most concentrated part of
the human motor and sensory nerve conduction tracts.

We comprehensively considered the ranking and
occurrence frequency of each brain region and determined
the top five alternative pinning nodes for the male and
female participants. For the female participant, these were
identified as brain regions 73, 43, 30, 67, and 72, whereas
for the male participant, they were identified as brain re-
gions 73, 67, 43, 74, and 77. Because the number of
pinning nodes would also affect the results, experiments
were carried out when the number of nodes was 1, 2, 3, 4,
and 5, respectively. The values of the parameters in the
adaptive pinning control scheme were determined by
feedback optimization, and the optimal number of pinning
nodes was determined by comparing the stimulus intensity
and the control effect.

F I G U R E 3 Difference between FC EMCI and FC NC of the female
participant when the male-to-female ratio was set to 1:1 and d = 20.
EMCI, early mild cognitive impairment; FC, functional connectivity.

TA B L E 2 Specific information about the controlled time series
pairs.

Sex Female Male

Male to female ratio 1:1 0:1 1:1 1:0

Subject series 61–100 21–60 56–95 56–95

Controlled series 101–140 111–150 96–135 16–55

TA B L E 3 The top 10 brain regions for each centrality attribute of
the female participant.

Centrality attribute 1 2 3 4 5 6 7 8 9 10

Degree centrality 73 72 67 68 43 30 48 84 47 81

Betweenness centrality 73 72 67 30 43 68 81 23 48 71

Closeness centrality 73 43 30 67 72 49 36 68 71 74

TA B L E 4 The top 10 brain regions for each centrality attribute of
the male participant.

Centrality attribute 1 2 3 4 5 6 7 8 9 10

Degree centrality 73 67 74 85 43 83 68 84 88 5

Betweenness centrality 73 67 74 43 77 68 23 78 24 83

Closeness centrality 73 43 67 77 78 74 25 83 5 37
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We also conducted experiments with the number of
nodes set to 1, 2, 3, 4, and 5 to obtain the optimal control
effect under the lowest stimulus intensity. The values of the
corresponding parameters k d i and c d i (0) were determined
by feedback optimization. In the experiment, the two pinning
nodes, which corresponded to brain regions 73 and 43,
showed better FC recovery effects for the female participant
under the two control groups. When the male-to-female ratio
was 1:1, the male participant had optimal results under the
three pinning nodes corresponding to brain regions 73, 67,
and 43, and when the male–female ratio was 1:0, the male
participant got the optimal result under two pinning nodes 73
and 67 brain regions.

3.2.3 | Recovery effects of functional
connectivity in the brain

Intervention experiments were conducted on the female
participant in the two control settings, and better recovery
results were achieved when the male-to-female ratio was 1:1.
The effect of the intervention at the FC level of brain re-
gions when the male-to-female ratio was 1:1 is shown in
Figure 5A. The stimulus was applied at the 57th time point,
and four brain signals were randomly selected. A significant
effect of the control on the BOLD signals was observed at
approximately the 83rd time point. To quantify the change in
the FC strength, the FC before and after control and the
averaged NC are shown in Figure 5B. After control, the FC
strength between brain regions showed a significant increase
in the lower right part of the FC. In general, the increase in
FC intensity had significant block characteristics, and the
change near the diagonal was obvious. The FCs were also
compared quantitatively, and the connections that were
stronger or weaker than those of the averaged NC FC are
visualized in Figure 5C. The distribution of connections in
the whole brain before and after control was generally uni-
form and consistent. Therefore, in general, the control
scheme maintained the positive functions of each patient,

whereas the brain regions related to negative connections
changed. On the whole, the strengths of negative connec-
tions were stronger after the control. The brain regions
related to negative connections before and after the control
will be further analyzed.

By comparison based on Figure 6, when all brain con-
nections were preserved, the number of connections
involved in each region was almost the same before and after
the control. When only the top 10% of connections were
retained, a significant difference appeared. Before the con-
trol, the negative connections were evenly distributed across
all brain regions. After the control, some brain region groups
were highly related to the negative connections, namely
brain regions 518 and 43–49. This indicates that the control
scheme had a good recovery effect on the overall FC of brain
regions but not on the functional recovery of the frontal,
precuneus, or occipital lobes.

The male participants achieved better improvement ef-
fects than the control group with a male-to-female ratio of
1:0. Figure 7 shows the functional recovery effect of the
brain area under this condition. In addition, the strength of
the connection near the diagonal was significantly improved,
and yellow area blocks similar to squares appeared. The
cross-shaped negative blue area of the real signal
became fuzzy after the intervention. Generally speaking, the
functional connection matrix after the intervention was
more similar to the real signal matrix, and generally, the
intensity distribution developed toward the average direc-
tion of the control group. Comparing the advantageous–
disadvantageous connections before and after the interven-
tion, the strengths of some dominant connections after the
intervention were higher than those before the intervention.

3.2.4 | Recovery effects of functional
subnetworks

According to the analysis of the distribution of the functional
connections before and after the control of the two

F I G U R E 4 Location of the top 10 pinning nodes.
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participants (Figures 8 and 9), some subnetworks were
highly related to the cognitive ability of the human brain; the
changes in FC within these subnetworks are further dis-
cussed in this section.

After control, the functional connection strength of all
subnetworks of the female participant increased to a certain
extent, which had little effect on the DAN, LN, and DMN
subnetworks but caused obvious changes in the VAN and
CN. This indicates that the recovery intervention can
improve language comprehension, attention processing, and
cognitive control in a specific individual. For the male
participant, the DAN and VAN changed significantly, with

the positive functional connection strength increasing. In
particular, the median line of the functional connection
strength distribution in the VAN was at the position of 0.6%,
and 75% of brain connection strength was above 0.4.

In addition to the variation of FCs within each sub-
network, the influence of the control strategy on the
communication between subnetworks was also of interest.
After thresholding, the number of connections between
subnetworks of the female participant before and after the
control was counted (Figure 10A). No significant change
was observed in the distribution of the number of con-
nections. The maximum number of connections between

F I G U R E 5 Effect of the multiple brain region collaborative control scheme on BOLD signals and FC strength of the female participant. (A) Evolution
of BOLD signals in brain regions 3, 30, 50, and 72. The control was applied at the 57th time point, and the control effect was obvious after the 80th time
point (left). The functional connections between the brain regions after control (right). (B) The empirical, simulated, and averaged NC FC. (C) For the
strengthened and weakened functional connections before and after control, only the top 1% are displayed because of the large number. BOLD, blood
oxygen level-dependent; FC, functional connectivity.
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the CN and DMN was maintained before and after the
control, and the connections between CN and LN had the
most significant increase. Furthermore, the key brain re-
gions that play important communication roles in the above
three subnetworks are also shown in Figure 10B,C;
Figure 10B shows the number of connections associated
with each brain region in the DMN–CN pathway, and
Figure 10C shows the number of connections in the
LN–CN pathway. According to the analysis shown in
Figure 10B, before the control, except for some “zero-
connection” brain regions, the distribution of the remaining
connections was relatively uniform, and that in the DMN is
more obvious. After control, the number of connections in
most brain regions showed an increase, and the central
position of some brain regions was more prominent, which
was not obvious in the DMN. However, in the CN, brain
regions 13–16 played a key role in communication with the
DMN; thus, this control scheme can be considered to
improve the role of the inferior frontal gyrus in information
processing and transmission. In the LN–CN pathway, the
control strategy caused more brain regions to participate in
the information transmission of the LN–CN, and some
brain regions played a central role; however, these brain
regions did not show obvious aggregation, such as the
brain regions 5, 42, 87 in the LN and brain regions 15, 16,
40, 61 in the CN.

In the control group with a male-to-female ratio of 1:0
(Figure 11), the number of functional connections between
the DMN and LN in the male participants increased signif-
icantly. On the basis of maintaining the overall distribution,
the number of connections between each group of subnet-
work pairs increased significantly; the most obvious increase
occurred between the CN and VAN, whereas the increase

between the DMN and CN was also apparent. The CN and
VAN were taken as examples for further analysis. It was
found that the number of brain connections associated with
the LN and DMN regions 33, 34, 41, and 42 increased from
<2 to approximately 8. The obvious increase in connections
in these brain regions represents the functional recovery of
the amygdala and cingulate gyrus; the cingulate gyrus plays
a role in regulating emotion, memory, autonomic nervous
function, and motor behavior, whereas the amygdala sup-
ports the learning and memory process of the human brain.
The number of connections in brain regions 11, 30, 63, and
64 related to VAN outward connections was effectively
increased, namely the inferior frontal gyrus of the insula,
the insula, and the superior limbal gyrus, which are the
emotional control centers of the brain; the superior limbal
gyrus and inferior frontal gyrus are mainly responsible for
motor control. The number of connections of brain regions 9,
13, 15 and 16 associated with the CN was basically
“developed from nothing.” The above brain regions were
found to belong to the orbital middle frontal gyrus, the
triangular inferior frontal gyrus, the orbital inferior frontal
gyrus, and other brain regions according to the AAL tem-
plate, and the corresponding brain regions are believed to
play a role in facial recognition, judging good or bad, and
consequences of actions.

4 | DISCUSSION

The neural activity of the brain is the result of the complex
interaction of nonlinear coupling and nonlinear oscillatory
processes.[28] Therefore, we simulated BOLD signals ac-
cording to a phenomenological model, that is, a single-node

F I G U R E 6 The number of weakened functional connections associated with brain regions before and after control. All connections (left), top 10% of
connections (right).
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dynamic equation. However, the actual coupling between
regions does not appear between the hemodynamic signals but
between the underlying neural activity. This method can
indirectly measure changes in FC in the brain. The structural
network was built on the basis of the direction of nerve bun-
dles in the white matter, where nerve fibers gather in the brain.
As nerve fibers are the constituent parts of neurons, neural
activity diffuses along the structural connection network. On
this basis, we determined the diffusion coefficient specific to
each participant to describe the above process.

The neural activity of the human brain changes rapidly
with changes in the environment and stimulation,[29] so it is
difficult to obtain good applicability of a stimulation method
with fixed control intensity in specific patients. The adaptive
pinning control scheme can solve this problem, and its
control effect is related to the selection of pinning
nodes.[30,31] Clinically, patients should have as few cont-
rolled brain areas as possible. Therefore, the number of
control nodes and the control energy need to be considered.
This work is only a theoretical simulation; the selected brain

F I G U R E 7 Effect of the multi-brain collaborative control scheme on BOLD signals and FC strength of the male participant. (A) The evolution of
BOLD signals in brain regions 3, 30, 50, and 72. The control was applied at the 10th time point, and the control effect was obvious after the 30th time point
(left). The functional connections between the brain regions after control (right). (B) The empirical, simulated, and averaged NC FC. (C) For the
strengthened and weakened functional connections before and after control, only the top 1% are displayed because of the large number. BOLD, blood
oxygen level-dependent; FC, functional connectivity.
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regions and the determined control energy provide applica-
tion ideas for clinical recovery therapy.

Considering that the BOLD signals of averaged NC are
affected by a variety of external factors, directly controlling
the BOLD signals of the participant so that they are
consistent with the average NC can not guarantee its control
effect. Therefore, finding a suitable approach to measure the
similarity between FCs and locating the controlled time se-
ries pairs of the participant and the target time segment of the
averaged NC can provide a more convincing explanation. In
this study, the target control effect was considered so that the
connection strength of several weak FCs related to cognitive
ability could be improved. Therefore, the control effect had a
strong correlation with the BOLD signals of the selected NC
group. Ensuring that the age and other physical information
of the selected NC group participants are consistent with the
participants as much as possible could improve the credi-
bility of the results.

Functional neuroimaging studies have shown that the
human brain has an obvious modular structure in the large-
scale functional network.[32] Some partition methods of
functional modules have also been proposed. In this study,
the rough partition proposed by Yeo et al. was used. Other

partitioning methods include the 10 subnetworks proposed
by Power et al.[33,34,35] and the 12 subnetworks proposed by
Glasser et al.[36,37] To more accurately understand the in-
fluence of the control scheme on the VN and language, a
system of 12 subnetworks may be more appropriate. The
system of 10 subnetworks also provides a way to analyze
the changes in the subcortical network. According to the
different application problems, the above templates can be
flexibly used to adjust the parameters of the intervention
scheme and the recovery effect. In addition, in recent years,
the separation and integration of functional modules have
also been found to be related to the development and
degeneration of human brain cognition.[38,39] Therefore,
studies on brain networks have also focused on the mining
integration and separation of these laws. Considering that it
is suitable for discussion on a longer time scale, this study
only divided the sub-network modules according to existing
templates. It was also noted that although the range of
connection strength in the DMN, DAN, and LN did not
change significantly after control, the distribution of the
connection strength in the DMN changed; therefore, it is
expected that relevant cognitive abilities may also be subtly
affected.

F I G U R E 9 Comparison of subnetwork functional connection distribution before and after the recovery scheme of the male participant: before (left)
and after (right).

F I G U R E 8 Comparison of subnetwork functional connection distribution before and after the recovery scheme of the female participant: before (left)
and after (right).
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F I G U R E 1 0 Comparison of functional connections within and between subnetworks of the female participant before and after control. (A) A
comparison of the number of functional connections among subnetworks. The number of connections between the DMN and CN showed advantages,
whereas the number between the LN and CN increased significantly after control. (B) Connection distribution between the DMN and CN. The distribution
of DMN external connections in each brain region (top) and the distribution of CN external connections in each brain region (bottom). (C) The distribution
of connections between LN and CN. CN, control network; DMN, default mode network; LN, limbic network.

F I G U R E 1 1 Comparison of functional connectionswithin and between subnetworks before and after control of themale participant. (A)A comparison of
the number of functional connections among subnetworks. The number of connections between the DMN and LN showed advantages, whereas the number
between VAN and CN increased significantly after control. (B) Connection distribution between the DMN and LN. The distribution of the LN external
connections in each brain region (top), and the distribution of the DMNexternal connections in each brain region (bottom). (C) The distribution of connections
between the VAN and CN. CN, control network; DMN, default mode network; LN, limbic network; VAN, ventral attention network.
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