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Introduction: It is known that many types of human activity involve a generation of particular patterns in
electroencephalographic recordings with common properties for different subjects. Among them one can highlight the brain
response to the visual stimuli in occipital lobe or motor-related activity in motor cortex. At the same time, more complex
human activity can induce different scenarios of the neural dynamics in brain, which depends on the human personal
features. Personality is more pronounced during mental task processing. In particular, it is shown that human personality
causes individual scenarios during decision-making and affects learning performance. We suppose that individual features
of human personality, when we wish to define the ways of how a human processes mental tasks, affect neural network
dynamics and therefore can be seen in electroencephalographic recordings. Purpose: Development of the algorithm for
estimating the personal spatio-temporal and time-frequency features of electrical brain activity during mental task evaluation.
Results: We propose algorithm, which allows to reveal individual features of the brain activity during completion of mental
tasks based on multichannel electroencephalogram analysis. Algorithm is implemented in brain-computer system and tested
during experimental session for the subjects who perform the Schulte table test. We show, that revealed individual features of
brain activity can predict the properties of human attention. Practical relevance: We believe that the results are of the great
interest for testing and diagnostics. It can be the starting point for development of automatic intelligent systems for estimation
and control of human mental abilities.
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Introduction

It is known, that many types of human activity
involve a generation of particular patterns in elec-
troencephalographic (EEG) recordings with common
properties for different subjects. For instance, the
perception of visual stimuli is known to induce an
event-related response of the neuronal brain network,
in particular, a decrease in alpha-wave (8—12 Hz) and
an increase in beta-wave (15—30 Hz) activities [1-3].
Such a behavior reflects different cognitive func-
tions, namely, the alpha-wave suppression is associat-
ed with visual [4] or auditory [5] attention, while the
beta-wave activation relates to information process-
ing [6] and an alerted state [7].

Different physiological and psychological states
(e. g., sleep stages, arousal, etc.) are known to pos-
sess specific properties of neural activity. For in-

stance, motor-related brain activity is manifested
in the brain as a specific scenario of neural activity
with well-defined frequency and spatial localiza-
tion. Particularly, it is characterized by event relat-
ed desynchronization (ERD) in alpha/mu- and be-
ta-bands [8]. The same features are observed during
motor imagery in specially trained subjects [9, 10].
However, different scenarios occur in untrained
subjects, where EEG patterns can vary from sub-
ject to subject [11]. Such a variation is caused by the
task complexity when each subject chooses his own
strategy to process the task, that results in individ-
ual time-frequency and spatio-temporal EEG struc-
tures. Along with motor imagery, the personality is
more pronounced during mental task processing. It
was also shown that human personality causes in-
dividual scenarios during decision-making [12] and
affects learning performance [13].
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‘We suppose that individual features of human
personality, when we wish to define the ways of
how a human processes mental tasks, affect neu-
ral network dynamics and therefore can be seen in
EEG recordings. Correlation between EEG and per-
sonal features provides possibility to estimate such
human features as personality traits and mental
abilities. It should be noted that this problem was
attacked yet in 1973. By analyzing resting states,
Edwards and Abbott [14] tried to reveal personality
traits in EEG signals. However, their attempt was
unsuccessful because personality is not manifested
when a person is at rest. Until now, this problem re-
mains open [15, 16]

In the present work, we propose algorithm,
which allows to reveal individual features of the
brain activity during completion of mental tasks
based on multichannel EEG analysis. Algorithm is
implemented in brain-computer system and tested
during experimental session for the subjects who
perform the Schulte table test.

Algorithm for EEG analysis

The proposed algorithm is schematically illus-
trated in Fig. 1. via a flowchart. One can see that it
is evaluated in seven steps.

Step I: Acquisition of multichannel EEG with
the help of non-invasive electrodes located on the
surface of the head, according to the arrangement
of 10—20. Electrical brain activity signals are re-
corded with a sampling frequency of 250 Hz. The
recorded signals are processed by a bandpass filter.

Step II: EEG signals recorded in different parts
of the cortex are divided into two equal groups. The
first group contains the channels located in the left
hemisphere (Fpl, F7, F3, T3, C3, P3, T5, 01), the
second group contains the channels located in the
right hemisphere (Fp2, F8, F4, T4, C4, P4, T6, 02).
The channels located in the interhemispheric region
(Fz, Cz, Pz) are excluded from consideration.

Step III: For each channel X, (¢) (in the first and
second group), wavelet transformationis performed.

The wavelet energy spectrum E"(f, ) =W, (f, t)?

is calculated for each EEG channel in the frequency
range 10—40 Hz. Here, W, (f, t) is the complex-val-
ued wavelet coefficients calculated as [17]

t+4/f
W, )=\ [ Xp(o*(f, tydt, (1)
t-4/f

where n=1, .., N is the EEG channel number
(N =19) being the total number of channels used
for the analysis) and “*” defines the complex
conjugation. The mother wavelet function o(f, t) is

the Morlet wavelet often used for the analysis of
neurophysiological data, defined as

. 2
olf, t):\/?nl/4e]wof(t—to)ef(t—to) /2’ 2

where w( = 2m is the central frequency of the mother
Morlet wavelet.

Step I'V: For each channel, the obtained wavelet
energy spectrum is analyzed in several frequency
ranges (in accordance with Table 1.)

For these bands the values of wavelet energy

EZ (1), Ef (1), EJ (1), E”1 , Egl , E for each -th EEG

channel are calculated as

n 1 N
B3 0. oD = 37 [ E'¢,naf. @)

fES,e,(l,Bl 9B2 Y

Based on Eq. (3) the percentages of the spectral
energy distributed in the considered bands are es-
timated as

(t)=El (t)/ E§ (1) (x100%), (4)

en
S,G,G,Bl 9B2 77 6,97(19[31 7B2 ’Y

where is defined as the whole energy and calculated
as

1 40Hz

El(#)=— E™(f, t)df. 5
HG) AfuL (f, tydf (5)

Step V: In order to describe the ratio between
high frequency and low frequency brain activity
for each channel the coefficient €" is calculated via
equation

¢" = Eqgy / Ery, (6)
where
n 1 n
Efp(t)=— [ E"(, v, (7)
f>10Hz

B Table 1. Frequency bands of EEG signals

Name Definition Frequency range,
Hz
Delta-band 3 1-4
Theta-band 0 1-8
Alpha-band o 813
Betal-band b, 13-23
Beta2-band b, 32-34
Gamma-band y 34-40
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Ep(=— [ E"(f vdf. ®)
f<10Hz

Step VI: The coefficients " are calculated for
each EEG channel for both during the task eval-
uation (active phase) and during resting state
(passive phase). The obtained values of €" are av-
eraged over the channels belonging to the first
and secon groups (see Step II for groups defini-
tion)

1 Efivp
ELH =~ -
Niu 5 Efp
n={Fpl, F3, F7, C8, T3, P3, 5,01}, (9)
Nyg =8
1 EZ
—_— - L
Ngu 3 Efp
n={Fp2, F4, F8, C4, T4, P4, T6, 02), (10)
Ngg =8.

As the result, the values £{§i""¢, e&35"°, et

£PI%8IV¢ gre obtained.
Step VII: Based on the obtained coefficients

Siﬁwe, Sf:&flwe, Sfﬁsswe, 8§%sswe which characterize

the activity of the left and right hemispheres, the

lateralization coefficient for the active and passive
phases pactive _ sﬁcﬁwe /Siﬂwe’ pPassive _ Sﬁia{sswe /
/eb ¢ are calculated.

Mental ability evaluation

In order to compare the results of EEG analysis
with the human mental abilities we used Schulte ta-
bles. Such method is frequently used as a psychodi-
agnostic test for studying properties of human at-
tention. It allows to determine working effective-
ness and ability, as well as resistance to external
interference. It is known, that the time of the -th
table completion can be used to evaluate personal
criteria:

1. Work efficiency WE (the arithmetic mean of
the values of table completion times)

T +Tg9 +...+Tg

WE=-1—2 " _[ 11
7 11)

2. Warming-up work indicator WU (the ratio of
the working time which subject spend for the first
table to the value of work efficiency)

WU =—1_ (12)
WE

3. Psychological stability PS (the human ability
to sustain the operational activity for a long period
of time).

_tr-1

PS .
WE

(13)

The work efficiency is known to illustrate the at-
tention consistency and performance. The resulted
WU close to or lower than 1 indicates good warm-
ing-up, while 1 and higher means that the subject
needs longer preparation time (warm-up) for the
main work. The PS results close to 1 and less indi-
cate a good psychological stability.

Data processing and main results

The results of the proposed algorithm evaluation
are shown in Fig. 2. on the single subject example.

Fig. 2 (a) demonstrates the typical EEG record-
ings obtained in left and right hemispheres during
the step I of the algorithm. -

Fig. 2 (b) shows the values of €5.0,0,B,,85,7 (®)

calculated during for a single EEG trial record-
ed from the frontal lobe, specifically, from the F4
electrode. One can see, that when the active phase is
replaced by the passive phase, the values of eéli ‘é (1)
calculated for low frequencies (namely, 6, and 6 fre-
quency bands) rapidly increase, while the values of
F4

ea’Bl vBZ’Y
bands, pronouncedly decrease. Such a dynamical
behavior repeats itself during subsequent comple-
tions of the Schulte tables.

Fig. 2 (c¢) shows the results of statistical analy-

sis of the values ef4 calculated for the time
S,G,G,Bl,BZ,Y

intervals corresponding to N = 5 consecutive active
and passive sessions. Data are shown as mean SD.
Obtained results demonstrate the significant in-

crease of eg ‘é and significant decrease of eg‘é By
y 'MP1sMP2»

during the transition from passive to active phase
(**p < 0.01 via nonparametric Whitney U-test).

Fig. 2 (d) demonstrates the distinctive features
between the mean values eg‘é By Py obtained for
the active and passive phases BiPedhch frequency
band. One can see that in the low frequency range,
which includes 3, and 6 frequency bands, such dif-
ference is positive (Def™ > 0), while in the high fre-
quency range (o, by, by, and y frequency bands) it is
negative (Def < 0).

According to this result, one can easily distin-
guish active and passive phases, based on the con-
sideration of EEG properties, i. e., by comparing
the energy of the spectral components belonging ei-
ther to high (HF) or low (LF) frequency bands. For
this purpose, it is convenient to use coefficient "

(t), calculated for o, by, by, and y frequency
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I: ( Multichannel (N=19) EEG acquisition using 10—20 EEG-layout )
II: ( Dividing EEG signals into two sets according to their belonging to left or right hemisphere )
( Fpl, F7, F3, T3, C3, P3, T5, O1 ) [ Fp2, F8, F4, C4, T4, P4, T6, 02 )
v
EEG EEG P EEG EEG EEG oo EEG
signal 1 signal 2 signal M signal 1 signal 2 signal M
III: ( Wavelet energy calculation in the frequency range 1-40 Hz )
1
EEG EEG EEG EEG EEG EEG
spectrum 1 spectrum 2] ® ® |spectrum M spectrum 1 spectrum 2| ® ® (spectrum M

4 A 4 4 4 y

2
N

Wavelet energy calculation in different frequency bands )

M
s 5 o0 €
1 2 M 1 2
1

EBI eﬁl eﬁl
1 ¢2 1 o2 M
e Ba B2 eB 2 Ba eB 2
1 2 M 2 M
V: ( Calculating ratio between wavelet energy values belonging to high and low frequencies )
( 81) ( 82) e o ( M) ol ( :2) &0 (v
VI: ( Averaging the obtained values over the channels belonging to right and left hemispheres )

4
active 8passive Sactive 8passive
LH LH RH RH

v v

™

)

VII: ( Calculation of lateralization coefficient for active and passive phases )

( Kactive) ( Kact;ive)

B Fig. 1. Flowchart of the algorithm for EEG analysis. Each step is marked as I...VII on the left-hand side
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B Fig. 2. The results of the proposed algorithm evaluation
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(Eq. 6), which reflects the ratio between the values
of spectral energy in the high and low frequency
ranges. In particular, for the considered F4 elec-
trode, the values of €™, shown in Fig. 2 (e) are sig-
nificantly lower during the passive phase than dur-
ing the active phase.

Thus, the time frequency analysis performed for
a single EEG recording demonstrates a pronounced
change in the ratio between the energy of high and
low spectral components. At the same time, along
with the features of time-frequency structure re-
vealed in a single EEG, the spatio-temporal features
of electrical brain activity also play an important
role. This is mostly reflected in hemispheric differ-
ences commonly observed in electrical activity of
the brain associated with the completion of mental
tasks [18—-22].

The spatio-temporal features are taken into ac-

count in our algorithm by consideration of the val-

active _active assive assive
ues eff1 %, eRH s S ERE

ing step VI by averaging over the channels, belong-
ing to left and right hemispheres.
active

Fig. 2 (f) demonstrates the values erg ,
active 8passive passive

®RH > ®LH  ®RH
subjects during active and passive phases. Data are
shown as median and 25-75 percentiles (box) and
outlines (whiskers). One can see that there are dif-
ferences in the electrical activity in the hemispheres
during active and passive phases. Namely, during
active phase subjects of the considered group ex-
hibit increase of high-freauency activity in right
hemisphere, while during the passive phase such
increase is observed in left hemisphere. As the re-
sult, median value of lateralization coefficient be-
comes >1 for active pahse and <1 for passive phase.
At the same time, such deviations in median later-
alization coefficient are insignificant. It evidences
the variability of this coefficient between subjects
in the group.

It can be supposed, that such variability is con-
nected with personal differences which affect the
process of mental task accomplishing. According
to this we have applied algorithm, described above
for the group of 20 subjects and compared the be-
haviour of lateralization coefficient with the re-
sults of psychodiagnostic test. We have shown
that the subjects, for which the lateralization co-
efficient is close to unity for both active and pas-
sive phases demonstrate the lowest value of work
efficiency (WE > 40 seconds) and the lowest de-
gree of psychological stability (PS~1.0). On the
contrary, subjects, for which the lateralization
coefficient k > 1.0 for active phases and « < 1.0
for passive phases demonstrate the value of work
efficiency much higher (WE~30 seconds) as well
as the higher degree of psychological stability
(PS < 0.9).

calculated dur-

calculated for group of 8

Materials and methods

Twenty healthy men (33%7 years), participated at
the experiment. All participants provided informed
written consent before participating in the experi-
ment. The experimental procedure was performed
in accordance to the Helsinki’s Declaration and ap-
proved by the local Ethics Committee of the Yuri
Gagarin State Technical University of Saratov.

Experiments was carried out during the first
half of the day. All participants performed a series
of simple psycho-diagnostic tests using the Schulte
tables to study their attention features. Shulte ta-
ble is a simplified version of Zahlen-Verbindungs-
Test (ZVT) [23, 24], widely used in Russia [25]. The
Schulte table is a 5x5 matrix of random numbers
from 1 to 25. The psychological task was to find
all numbers in a reverse order. During these active
experimental phases, each person had to complete
R =5 tables. For every i-th testing series, the com-
pletion time T'; was registered. Between the active
phases, each volunteer had a short resting interval
referred to as a passive experimental phase. Length
of active phases was varied from 30 to 50 second
depending on the speed of task completion. Length
of passive phases was set as 10 seconds.

Electrical brain activity was recorded with
multi-channel EEG-acquisition system — electro-
encephalograph-reorder Encephalan-EEGR-19/26
(Russia) with multiple EEG channels and the
two-button input device. To study EEGs the monop-
olar registration method and the classical ten-twen-
ty electrode system were used.

Conclusion

We propose the algorithm for the estimation of
the spatio-temporal and time-frequency features
of electrical brain activity during the mental task
evaluation. Time-frequency features of the brain
activity are estimated by analyzing EEG spectral
energy in high- and low- frequency bands. Spatio-
temporal features are estimated with the help of
lateralization coefficient. Proposed algorithm is
implemented in brain-computer interface and test-
ed and tested during experimental session for the
subjects who perform the Schulte table test. We
demonstrate, that the dynamics of lateralization
coefficient reflects the personal features of the
brain activity, which correlates with the properties
of human attention. In particular we show that that
the subjects, for which the lateralization coefficient
is close to unity for both active and passive phas-
es demonstrate the lowest value of work efficiency
and the lowest degree of psychological stability. On
the contrary, subjects, for which the lateralization
coefficient k > 1.0 for active phases and k¥ < 1.0 for
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passive phases demonstrate the value of work effi-
ciency much higher as well as the higher degree of
psychological stability.

We believe that the results are of the great inter-

est for testing and diagnostics. It can be the start-
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7

ing point for development of automatic intelligent
systems for estimation and control of human men-
tal abilities.
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Brenenue: MHOTHE BUALI U€JIOBEUYECKOM AEATETLHOCTH ACCOMUUPYIOTCA C BOSHUKHOBEHNEM XapaKTePHBIX MTATTEPHOB HA 3JIeKTPOIHIe-
(dasorpaduuecKuX 3aMUCAX, KOTOPBIE 00/Iafa0T OOIUMY CBOMCTBAMHU [JIsI PA3HBIX UCIBITYEeMBIX. Cpelyr HUX MOYKHO BBIIEJIUTh OTKJIUK
MOS3ra Ha BU3YaJIbHbIE CTUMYJIbI, PETUCTPUPYEMBIIN B 3aTHIJIOYHOM 00JIaCTH, MJIN HEAPOHHYIO aKTUBHOCTD, CBASAHHYIO C JBUTATEIbHBIMU
(PYHKIUAMYU, PETUCTPUPYEMYIO B MOTOPHOU KOpe. B To ske Bpems, 6ojiee CI0KHAS AeATEILHOCTD YeJIOBEKA MOYKET BBISBIBATEH PA3TUUHBIC
clleHapuu HePOHHOU JUHAMUKY B 3aBUCAMOCTH OT NMHANBUAYAILHBIX 0CO0eHHOCTE! ueoBeka. Hanbosee 3HAUNTEIBHO JaHHBIN 2(DHeKT
IIPOABJIAETCA IIPU BBIIIOJTHEHU M Y€JIOBEKOM KOIHUTHUBHBIX 3a4a4. B YaCTHOCTH, IIOKA3aHO, YTO MHAUBHUAYAJbHBIE 0C06eHHOCTI/I ompeneJsa-
IOT CIleHAPUY HEMPOHHON aKTUBHOCTHU IIPU IPUHATUH PEIeHUN U BIAUAIOT HA 3PHOEKTUBHOCTh 00yueHusA. MOKHO MIPEATIONI0KUTD, UTO WH-
IUBUIYyaIbHbIE OCOGEHHOCTU UeIOBEYECKON JUUYHOCTU ONPEAEIAIOT CTPATETHIO, KOTOPYIO YEJIOBEK UCIIOIb3yeT IPU PEIIeHUY KOTHUTUB-
HBIX 3a/Ia4UM, YTO, B CBOIO OUePe/ib, OTPAKAETCA HA AUHAMUKE HEMPOHHOM CETH MO3Ta ¥ MOYKeT OBITh JeTeKTUPOBAHO Ha 3JIEKTPOSHIe(daIo-
rpaduyeckux 3anucAx. Ileab: pagpaboTka aJropuTMa OleHKU WHAWBUAYAJIbHBIX IIPOCTPAHCTBEHHO-BPEMEHHBIX ¥ YaCTOTHO-BPEMEHHBIX
XapPaKTePUCTUK 3JIEKTPUUECKON aKTUBHOCTY I'OJIOBHOT'O MO3Ta IIPU PEIIeHNN KOTHUTUBHBIX 3a71aur. Pe3yJabTaThl: IPEJI0/KEH aJITOPUTM,
HOSBOJ’IHIOIJ.II/Iﬁ BBIABUTHL MHAVWBUAYaAJIbHBIE OCO6eHHOCTI/I (byHICLII/IOHI/IpOBaHI/Iﬂ HeﬁpOHHOﬁ CeTHU MO3ra IIPU BBLIIIOJITHEHNUN KOI'HUTHUBHBIX
3a/1a4 Ha OCHOBE aHAJIM3a MHOTOKAHAIBHEIX 3JIEKTPOsHIIe(asorpaMm. AJIropuT™ peasns3oBaH B Bue naTepdeiica Mo3r-KOMIBIOTED U IIPO-
TECTUPOBAH HA TPYIINE UCIBITYEMBIX, KOTOPbIe BHIMOAHAIOT TecT [llyabre. [lokazamno, YTO BEIABIECHHBIE HHAUBUIYAJbHBIE OCOGEHHOCTU
aKTUBHOCTYU MOSTa MOT'YT aCCOLMUPOBATHCA CO CBOMCTBAMY UEJIOBEYECKOr0 BHIMAHU B IIPOIECCe pelreHus 3afad. IlpakTuueckas: 3ua-
YMMOCTD: [OJIyUY€HHBIE PE3YJIbTAThI MPEJCTABIAIT GOJIBIION HHTEPEC NJIsI TECTUPOBAHUSA U AUATrHOCTHUKU. OHU SIBJISIOTCS OCHOBOI IJIst
PaspaboTKM aBTOMATUYECKUX NHTE/LIEKTYAIbHBIX CUCTEM [IJIsl OIIEHKN U KOHTPOJISI YMCTBEHHBIX CITOCOGHOCTEN YeI0BEeKa.

Kirouesslie ciioBa — BeilBiieTHOe IpeoOpa3oBaHue, deKTposHIiedasorpadusd, peleHne KOTHUTHBHON 3aa4u.
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