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Abstract: Applying machine learning algorithms to graph-structured data has garnered significant
attention in recent years due to the prevalence of inherent graph structures in real-life datasets.
However, the direct application of traditional deep learning algorithms, such as Convolutional
Neural Networks (CNNs), is limited as they are designed for regular Euclidean data like 2D grids
and 1D sequences. In contrast, graph-structured data are in a non-Euclidean form. Graph Neural
Networks (GNNs) are specifically designed to handle non-Euclidean data and make predictions
based on connectivity rather than spatial structure. Real-life graph data can be broadly categorized
into two types: spatially-invariant graphs, where the link structure between nodes is independent
of their spatial positions, and spatially-variant graphs, where node positions provide additional
information about the graph’s properties. However, there is limited understanding of the effect of
spatial variance on the performance of Graph Neural Networks. In this study, we aim to address this
issue by comparing the performance of GNNs and CNNs on spatially-variant and spatially-invariant
graph data. In the case of spatially-variant graphs, when represented as adjacency matrices, they
can exhibit Euclidean-like spatial structure. Based on this distinction, we hypothesize that CNNs
may outperform GNNs when working with spatially-variant graphs, while GNNs may excel on
spatially-invariant graphs. To test this hypothesis, we compared the performance of CNNs and
GNNs under two scenarios: (i) graphs in the training and test sets had the same connectivity pattern
and spatial structure, and (ii) graphs in the training and test sets had the same connectivity pattern
but different spatial structures. Our results confirmed that the presence of spatial structure in a graph
allows for the effective use of CNNs, which may even outperform GNNs. Thus, our study contributes
to the understanding of the effect of spatial graph structure on the performance of machine learning
methods and allows for the selection of an appropriate algorithm based on the spatial properties of
the real-life graph dataset.

Keywords: graph neural network (GNN); convolutional neural network (CNN); classification; graph
structures; adjacency matrix; modularity; segregation; clustering; spatial invariance

MSC: 68T01; 97R40; 05C82

1. Introduction

The increasing volume and complexity of real-life data structures push researchers to
shift from conventional machine learning to deep learning.

Conventional machine-learning techniques have limited ability to process data in
their raw form: hence, demanding careful engineering and substantial domain expertise to
transform the raw data into a feature vector that can serve as a proper input to the algorithm.
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Deep learning methods allow replacing hand-engineered features with multilayer
networks trained to discover the structures in data. Therefore, a machine learning algo-
rithm can take raw data to automatically discover hidden structures needed for detection
or classification [1].

The brightest example of deep learning algorithms includes convolutional neural
networks (CNNs) used to process images or videos, where the raw data comes in the
form of ordered 2-D or 1-D arrays of pixels. Each layer of a CNN performs convolutional
operations on the image followed by a non-linear activation. The keys of CNNs are local
connection, shared weights, and the use of multiple layers [2].

The main limitation of the CNNs is that they can only operate on regular Euclidean
data, such as images (2-D grids) and texts (1-D sequences). At the same time, much real-life
data comes in the non-Euclidean form, e.g., graph-structured data. The specific examples
include but are not limited to social networks, DNA and RNA sequences, transportation,
and brain neural networks. Therefore, solving classification, clusterization, and other
problems on graphs becomes of great interest and importance [3].

In recent years, graph neural networks (GNN) have attracted attention from the
machine-learning community. Areas dealing with graph-structured data, such as social
networks, molecular structures, and recommendation systems, have undergone significant
advancements through the application of GNNs [4,5]. There is also interest in applying
GNNs to the analysis of functional brain networks, e.g., to classify patients with major
depressive disorder and healthy subjects [6].

GNN enables learning from non-Euclidean data. The absence of a fixed and consistent
metric space in such data presents a challenge when applying traditional algorithms
that rely on fixed geometries. By leveraging the underlying graph structure, GNNs can
effectively capture the complex relationships between nodes and edges in the data and
learn to make predictions based on that structure [7].

The real-life graph data fall into two broad categories: spatially-invariant and spatially-
variant graphs. In a spatially-invariant graph, the structure of links between the nodes
does not depend on their position in space. A network of social interactions is an example.
In a spatially-variant graph, the location of the nodes matters and provides additional
information about the graph’s properties. Examples include molecular structures, brain
networks, etc. There is a limited understanding of how the performance of GNNs differs
between these two classes of graphs and how we can leverage information about the spatial
structure to improve the performance of machine learning models.

We can represent a graph with an m×m adjacency matrix where m reflects the number
of nodes. Each element (i, j) of this matrix defines the link between the i-th and j-th nodes.
In the spatially invariant graph, if you shuffle its edge list or the columns of its adjacency
matrix, it is still the same graph (See Figure 1a). Figure 1 shows the explanatory case
of a small graph consisting of the five nodes (A, B, C, D, E) and four links (A-E, A-C,
A-B, B-D). The different panels illustrate the cases of the spatially-invariant (a) and the
spatially-variant (b) graphs. The figure also presents their adjacency matrices. On the
left, the matrix has columns and rows ordered in alphabetical node order: on the row for
node A (first row), we can read that it is connected to E and C. On the right-hand side, the
same graph is shown with the different locations of the nodes. On the right, the adjacency
matrix is shuffled (the columns are no longer sorted alphabetically). So in the case of the
spatially-invariant graphs (a), two matrices give a valid representation of the graph (A is
still connected to E and C). For the spatially-variant graphs (b), a shuffled adjacency matrix
cannot suffer as a valid representation.

We suggest that an adjacency matrix provides the Euclidean form for a spatially-variant
graph but becomes invariant to the permutation of nodes’ indexes in a spatially-invariant
graph. Thus, we hypothesize that CNN may outperform GNN when working with
spatially-variant graphs while GNN will perform better on the spatially-invariant graphs.
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(a) spatially-invariant (b) spatially-variant

Figure 1. A toy example of the spatially-invariant (a) and the spatially-variant (b) graphs. In each
panel, the left side shows the initial graph (above) and its adjacency matrix (below), while the left
side corresponds to the graph with the shuffled nodes. For the spatially-invariant graphs (a), two
matrices give a valid representation of the graph. For the spatially-variant graphs (b), a shuffled
adjacency matrix cannot suffer as a valid representation.

To test this hypothesis, we propose a simple algorithm to generate graphs with pre-
defined spatial structures and connectivity patterns (a sub-structure of the links that the
machine learning algorithm should learn). We trained and tested CNN and GNN in two
cases. First, the graphs in the training and test sets had the same connectivity pattern (struc-
ture of the links between nodes) and spatial structure (location of nodes). Second, graphs in
the training and test sets had the same connectivity pattern but different spatial structures.

Our results confirmed the existence of spatial structure in the graph enables using CNN,
which may even outperform GNN in some cases. The main contribution of our results is that
having prior knowledge about the spatial structure in real-life datasets enables the selection of
the most appropriate machine learning algorithm to achieve optimal performance.

2. Materials and Methods
2.1. Graph Generation Algorithm

Here we tested the accuracy of the deep learning algorithms in the classification task
performed on the graph-structured data. Therefore, we were required to create two classes
of graphs that differed in their connectivity pattern. For simplicity, we defined negative
class as fully-connected graphs, where the links’ weights were sampled from the half-
normal distribution N(µ0 = 0, σ2 = 0.169). In the second positive class, we generated
graphs containing a predefined segregated connectivity pattern. We divided all graph
nodes into the nr equal regions (each included npr nodes, and increased the link’s weight
inside 6 regions (we called them active regions through the text). The link’s weights for
the active regions were sampled from the normal distribution N(µ1, σ2 = 0.169), where µ1
varied from 0 to 7 with the step n = 1.

The value of n is a step number that signifies the distance between µ0 and µ1 (Figure 2).
At n = 0 (Figure 2a) the distributions are the same, meaning that links’ weights were
sampled from the same distribution in the entire graph. This results in the same structure
across both classes. At n = 1, µ1 = 1 (dashed line in Figure 2b), meaning that the nodes
in the active regions get obtain stronger link weights. Further increase of n results in the
strengthening difference in the link weights between the active regions and the rest of the
graph (Figure 2c,d).

To summarize, all graphs have m = 120 nodes with nr = 12 pre-defined regions, 50%
of which are active, and n varies in the range of [0, 7], determining how distinguished the
link weight in active regions from the links in the rest of a graph is.

It should be noted that the algorithm is non-deterministic. Given the same input
parameters (µ0, mu1, σ), every outcome is different due to sampling. It allowed us to
generate graphs that exhibit structural similarities but differ in terms of edge weights.
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Examining the adjacency matrices, one can see that the graphs in the positive class
have a certain pattern on the adjacency matrix (compare Figures 3 and 4), which becomes
more pronounced with the growing n. This pattern has a diagonal structure and depends
on the ordered number of active regions. When activating the odd regions, this pattern
takes the form of an alternating sequence of squares.

(a) n = 1 (b) n = 3

(c) n = 5 (d) n = 7

Figure 2. The probability density functions (PDFs) reflect the distributions of the link weights inside
the active regions and in the rest of the graph (PDF, centered at 0). Panels (a–d) correspond to the
different values of n defining the distance between the mean values of these distributions. The mean
value of the link weight inside the active regions is shown by the vertical dashed line.

2.2. Datasets

This section provides a description of both datasets: spatially-variant and spatially-
invariant. It should be noted that training and test tests of positive class within each dataset
were different, while negative class was always the same.

2.2.1. Negative Class in Both Datasets

To test if the deep learning algorithms may handle spatially-invariant graphs, we
created two datasets. Each dataset has a positive and a negative class. Recalling Section 2.1,
the graphs of negative class are generated with parameter n = 0. By design, such the
graphs do not have regions. The weights for nodes’ connections are sampled from the
half-normal distribution N(µ0 = 0, σ2 = 0.169). Figure 3 shows the typical adjacency
matrices for the negative class. Panels (a-d) correspond to the different values of n defining
the difference in the link weight between the active regions and the rest of the graph. Since
in the negative class, we sampled the link weights from a single distribution for all regions,
adjacency matrices demonstrate the homogeneous distribution of the weights that barely
depends on n.

2.2.2. Positive Class in the Spatially-Variant Dataset

The first dataset reflected the case of the spatially-variant graph. The graphs in the
training and test sets had the same connectivity pattern (structure of the links between
nodes) and spatial structure (location of nodes). To generate the same connectivity pattern,
we keep the same number of active regions across the sets. To generate the same spatial
structure, we make the same regions active in the training and test sets. To reduce over-
fitting, we make the structure of the training and test graphs differ from each other. We
achieved it by shifting the spatial pattern along the horizontal and vertical dimensions.
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Specifically, we set the odd regions (1, 3, 5, 7, 9, and 11) active in the training set (Figure 4),
and the even regions (2, 4, 6, 8, 10, and 12) – in the test set (Figure 5).

(a) n = 0 (b) n = 0 (c) n = 0 (d) n = 0

Figure 3. Examples of the adjacency matrices of the negative class. The pixel’s brightness reflects
the link weight. Panels (a–d) correspond to the different values of n defining the difference in the
link weight between the active regions and the rest of the graph. Since in the negative class, we
sampled the link weights from a single distribution for all regions, adjacency matrices demonstrate
the homogeneous distribution of the weights that barely depends on n.

(a) n = 1 (b) n = 3 (c) n = 5 (d) n = 7

Figure 4. Examples of the adjacency matrices in the training set illustrate the case when the odd
regions are active, i.e., link weight inside these regions is greater than in the rest of the graph.

(a) n = 1 (b) n = 3 (c) n = 5 (d) n = 7

Figure 5. Examples of the adjacency matrices in the test set illustrate the case when the even regions
are active, i.e., link weight inside these regions is greater than in the rest of the graph.

2.2.3. Positive Class in the Spatially-Invariant Dataset

The second dataset reflected the case of the spatially-invariant graph. The graphs in
the training and test sets had the same connectivity pattern but different spatial structures.
To generate the same connectivity pattern, we keep the same number of active regions
across the sets. To generate a distinct spatial structure, we make the different regions
active in the training and test sets. The training set, depicted in Figure 6, comprised active
regions 1–4 and 11, 12, while active regions 5–10 were incorporated in the test set, as shown
in Figure 7.

Figure 8 summarizes the spatially-invariant and spatially-variant datasets on which
both GNN and CNN are trained and tested. It should be noted that the examples are shown
for n = 7 to highlight the active regions, while we formed similar datasets for various n.
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(a) n = 1 (b) n = 3 (c) n = 5 (d) n = 7

Figure 6. Examples of the adjacency matrices in the training set illustrate the case when regions 1–4
and 11, 12 are active, i.e., link weight inside these regions is greater than in the rest of the graph.

(a) n = 1 (b) n = 3 (c) n = 5 (d) n = 7

Figure 7. Examples of the adjacency matrices in the training set illustrate the case when regions 5–10
are active, i.e., link weight inside these regions is greater than in the rest of the graph.

Figure 8. The summary of the spatially-invariant and spatially-variant datasets on which both
GNN and CNN are trained and tested. The sample size reflects the number of matrices in the train,
validation, and test sets.

The training set for both datasets includes 256 samples for each class, and the validation
and test sets contain 32 samples per class. It’s important to note that each dataset is balanced
and the use of weight sampling ensures that every graph is unique.

2.3. Graph Metrics

Researchers use clustering [8–10] and modularity [11–13] to measure network seg-
regation. The main difference between the two is that the former does not take regional
information (the region a node belongs to) into account, while the latter does.



Mathematics 2023, 11, 2515 7 of 13

For unweighted graphs, node u’s clustering depends on the number of triangles
passing through the node, T(u), and the degree of the node, deg(u):

cu =
2T(u)

deg(u)(deg(u)− 1)
. (1)

However, in our case, the graphs are weighted, so we used the formula provided by
networkx library and taken from Onnela et al. [9]. It uses the geometric average of the
subgraph formed by nodes u, w, and u:

cu =
1

deg(u)(deg(u)− 1)) ∑
vw
(ŵuvŵuwŵvw)

1/3, ŵuv =
wuv

max(w)
, (2)

where wuv is the weight of connection between u and v, max(w) is the maximum weight in
the network.

The formula for modularity is more complicated due to taking regional information
into account. The metric quantifies the degree to which a network is split into densely
connected regions. To calculate modularity, we used bct library.

Qi =
1
I ∑

i,j∈N

[
wij −

kik j

I

]
δri ,rj , (3)

where wij is the weight of connection between nodes i and j, ki = Σwij is the degree of
node i, I is the sum of all weights in the network; it is a normalizing constant, and

δri ,rj =

{
1, if nodes i and j are in the same region,
0, otherwise.

Global clustering and modularity of a graph is the average of its nodes’ corresponding
metric values. Weighted clustering and modularity measure segregation differently, and
further sections depict the difference.

2.4. Graph Neural Network

GNN consists of graph convolutional layers defined by Kipf et al. [14], Leaky ReLU as
activation, dropout layers, and linear layers in the end to obtain output. Figure 9 shows
the architecture (dropout layers are not shown). Overall, the model has 3473 trainable
parameters.

To train the model, we used an Adam optimizer with a learning rate of 0.002, weight
decay equals zero. To calculate loss, we used Binary Cross Entropy with logits that combines
sigmoid activation and Binary Cross Entry loss.

Figure 9. Architecture of graph neural network.
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2.5. Convolutional Neural Network

CNN consists of graph convolutional layers, pooling layers, batch normalization, ReLU
as activation, dropout layers, and linear layers in the end to obtain output. Figure 10 shows
the architecture (dropout layers are not shown). Overall, the model has 9084 trainable
parameters.

A graph is a 1-D image, e.g., gray-scaled because the pixel at index (i, j) is a number
corresponding to the edge’s weight e(i, j).

To train the model, we used an Adam optimizer with a learning rate of 0.001 and
weight decay of 0.0005. To calculate loss, we used binary cross entropy with logits.

We used adjacency matrix representation to turn a graph into an image. This way, our
CNN took a batch of 1-D images as input.

Figure 10. Architecture of convolutional neural network.

2.6. Performance Evaluation

CNN- and GNN-specific parameters were described in the sections above. However,
the models have maximum of 100 epochs per training set with early stopping monitoring
validation loss. In this case it means that if the model’s loss stopped decreasing for 3 epochs,
the training stops. Both models’ hyper-parameters (e.g., learning rate and weight decay)
were set through Ray Tune library with grid searcher based on Bayesian Optimization
(BayesOptSearch). We ran an optimization algorithm in the following parameter space:

• Number of convolutional modules (choice: [1, 2 (CNN), 3 (GNN), 4]);
• Learning rate (choice: [0.0001, 0.001 (CNN), 0.002 (GNN), 0.005, 0.01]);
• Weight decay (choice: [0 (GNN), 0.00001, 0.0005 (CNN), 0.001]).

The tuner was set to monitor validation loss, meaning that how fast the loss decreases
is a crucial factor to a chosen set of hyperparameters. The tuner was run on datasets for
n = [1, 4, 7], and we chose the hyperparameters that proved most optimal more often.

For both models, we used a validation set to fine-tune the model and then tested it on
the test sets. Accuracy, recall and specificity were calculated as an average across batches of
the training and test sets.

3. Results

First, we analyzed how the graph properties change with the varying share of the
active regions and the weights inside these regions. We used clustering and modularity
coefficients (refer to Methods) to quantify the graph properties. Figure 11 presents the
results. The modularity growth follows the step number n. With each step, the weights
inside active regions further exceed the ones in the rest of the graph (as defined by an
algorithm of the dataset generation). Thus, the stronger connection inside the active
regions causes higher modularity. The more regions that are active, the higher the graph’
modularity. The clustering coefficient barely responds to the changing weight within active
regions. It remains unchanged with an increase in the number of active regions, as depicted
in Figure 11.
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Figure 11. Clustering and modularity when 6 (50%) and 9 (75%) out of 12 regions are active, i.e., link
weight inside these regions exceeds one in the rest of the graph.

Then, we tested the performance of the GNN and CNN in the graph classification task
for different weights within the active regions. Figure 12 provides complete GNN’s and
CNN’s performance information. The step identifies to what extent the weights within the
active regions c Panels (a) and (b) correspond to the training and test sets. We considered
two graph types: spatially-variant and spatially-invariant. Recall that the spatially-variant
type represents the case when the adjacency matrices have a similar structure among the
training and test set but shifted along the horizontal and vertical dimensions as depicted
in Figure 4 and 5. On the contrary, spatially-invariant corresponds to the case when the
spatial structure on the adjacency matrices differs between the training and test sets. Unlike
the spatially-variant case, the spatial structure of the adjacency matrices in the test set
can not be obtained from the training set by shifting along vertical and horizontal axes
(Figure 6 and 7).

Metrics of accuracy, recall, and specificity show that at step n = 0 GNN labels every
graph as negative, and then, at step n = 1 it labels every graph as positive. It shows how
difficult it is for GNN to distinguish between the two classes because at n = 0, there is
no distinction between the classes, and at n = 1 there is very little distinction. After and
including n = 2, GNN becomes better at recognizing both classes, and recall and specificity
report nearly the same numbers, which shows little bias towards either of the labels.

As for CNN, we see that it overfits the training set for both labels: positive and
negative. In the case of spatially-invariant graphs, it becomes biased towards positive
labels, as specificity in the test set is low, while recall is high. However, in the case of
spatially-variant graphs, after n = 1, CNN manages to become good and even excellent at
predicting both labels.

(a) Training datasets (b) Test datasets

Figure 12. Accuracy of GNN (orange curve) and CNN (blue curve) for the spatially-variant dataset
(dashed line) and spatially-invariant dataset (solid line) depending on the step number n. Panels (a,b)
correspond to the training and test set.
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(a) Training datasets (b) Test datasets

Figure 13. Recall of GNN (orange curve) and CNN (blue curve) for the spatially-variant dataset
(dashed line) and spatially-invariant dataset (solid line) depending on the step number n. Panels (a,b)
correspond to the training and test set.

(a) Training datasets (b) Test datasets

Figure 14. Specificity of GNN (orange curve) and CNN (blue curve) for the spatially-variant dataset
(dashed line) and spatially-invariant dataset (solid line) depending on the step number n. Panels (a,b)
correspond to the training and test set.

Convolutional Neural Network. Despite overfitting on both training sets, the CNN
still showed an increase in accuracy for the test set of the spatially-variant dataset, which
had a similar structure to the training set. At n = 0, where there is no differentiation
between active and inactive regions, the accuracy for both test datasets was around 50%.
As n increased, so did the accuracy for the spatially-variant test set, but the CNN did not
appear to have learned anything for the spatially-invariant test set, as its accuracy remained
around 50%. CNN successfully learned that Figures 4 and 5 depicted the same structure,
but it was not able to do the same for another dataset, Figures 6 and 7, which had visually
different structures.

Graph Neural Network. The GNN demonstrated a similar level of performance for
the test sets of both datasets, suggesting that it did not distinguish much between the two.
As expected, the GNN’s performance improved as n increased.

4. Discussion and Conclusions

We tested if the convolutional neural network could outperform the graph neural
network in the classification task involving graphs with a spatial structure, i.e., the locations
of nodes are predefined. For simplicity, we considered segregated graphs, i.e., including
the clusters of the densely connected nodes.

We used two different graph metrics of segregation—clustering coefficient, and mod-
ularity. The clustering coefficient captures the existence of segregated structures in the
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spatially-invariant graphs. On the contrary, modularity uses information about the spatial
location of nodes; therefore, quantifies segregated patterns in the spatially variant graph.
Our results show that increasing link weights inside the predefined graph regions causes
modularity to grow but barely affects the value of the clustering coefficient. Thus, we sug-
gest that the term segregatio’ has a different meaning in the spatially variant and spatially
invariant graphs.

For the spatially-invariant graphs, it defines that nodes tend to create tightly knit
groups characterized by a relatively high density of links; this likelihood tends to be greater
than the average probability of a link randomly established between two nodes. However,
there is no difference in whether the nodes in groups are the neighbors in space or not. This
situation is usually observed in social networks, when the link between individuals may be
strong even if they live on opposite sides of the globe [15,16].

In spatially-variant graphs, segregation implies that the nodes being neighbors in space
form densely connected clusters in the graph. An example regarding the spatial location
matter is the brain’s functional networks [17]. For example, when we respond to sensory
stimuli, the neuronal populations in the sensory-processing anatomical regions usually
form synchronous clusters (segregation) [18,19]. Their local synchronization provokes the
growing power of the high-frequency electrical signals recorded in these areas [20]. At the
more high-level processing stages, neural populations belonging to the distant brain areas
start interacting, which changes the brain network mode from segregation to integration
[21] due to adaptation processes [22,23].

We introduced regions inside a graph and distributed nodes between these regions.
Therefore, we considered spatially-variant graphs that mostly resemble the case of brain
functional networks [17,21] rather than social interactions [24,25]. Therefore, modularity
was a more adequate measure of segregation than the clustering coefficient.

Then, we showed that the convolutional neural network outperforms the graph neural
network on the graph data if the spatial pattern on the adjacency matrix was similar across
the training and test sets. It should be noted that we did not use a fully similar pattern. As
shown in Figure 6, the adjacency matrix pattern was shifted in the test set as compared
to the training set. At the same time, CNN handled this pattern well due to its ability to
efficiently extract and process spatial features from the data. Since the relative location
of active regions in the image did not change, CNN could identify them and classify
them correctly.

The similarity between the adjacency matrices means that the link weights were high
between the nodes in the same spatial regions in the training and test sets. Therefore, CNN
learned to identify the segregation structure with a certain spatial configuration. This fund-
ing emphasizes the potential advantage of CNNs in the tasks with spatially variant graphs,
including brain functional networks where the node location reflects anatomical features.

Finally, we showed that the graph neural network outperforms the convolutional
neural network when the spatial pattern on the adjacency matrix changes between the
training and test sets. This means that the link weights were high between the nodes in
the different spatial regions in the training and test sets. According to the global graph
properties reflected by the modularity and clustering, the training and test graph sets
were the same because of the similar number of active regions. Unlike CNN, GNN could
handle it because it does not take any spatial information of the nodes into account, while
CNN does. The features that GNN cares about (number of active regions, strength of
connectivity inside the active regions) did not change; hence, the performance did not
change. In social networks, it means that people formed several communities, where the
size of these communities and the number of communities remained the same but the
people participating in the communities were different. For the brain network structure, the
sensory-motor integration task may produce different patterns depending on the modality
of sensory information. Thus, visual information will induce neural synchronization in the
occipital (visual) area, but auditory information in the temporal (auditory) area. Together
with the sensory-related areas, there will be activation in frontal and motor brain zones.
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In conclusion, we define the areas where the CNN and GNN can be applied to graph
data as follows:

• GNN handles the situations when the overall changes in the graph structure are of
interest, e.g., a transition from segregation to integration, formation of communities,
etc. GNN does not require nodes to have predefined spatial locations.

• CNN handles the situations when the changes in a particular part of the graph are of
interest, e.g., whether the particular nodes of interest changed their interaction. CNN
requires nodes to have predefined spatial locations.

Applying machine learning algorithms to graph-structured data has been attracting
great attention in recent years [26]. Approaches in this direction fall into two broad
categories. Firstly, the data-level approach involves learning graph representations in a low-
dimensional Euclidean space through embedding techniques [3]. Secondly, the model-level
approach involves modifying traditional machine-learning algorithms to handle graph data.
One of these techniques is graph kernels, which enable kernel-based learning approaches
such as SVMs to work directly on graphs [27]. Another approach is formulating CNNs
in the context of spectral graph theory [28]. Additional approaches include advanced
convolutional procedures such as spatial convolution utilizing a random walk [29]or
convolutional filters using the Gaussian mixture model [30]. In this context, our results
contribute to the data-level approach by demonstrating that in certain situations, CNNs
can be directly applied to 2D adjacency matrices.

As the main limitation, we highlight the robustness of the network performances
against noise which is always present in real-life datasets. In our study, we account for
the noise effect by incorporating the variance of the Gaussian distributions of the network
weights. We hypothesize that increasing the noise will raise the minimum value of n at
which the GNN can effectively distinguish between the classes, as shown in Figures 12–14.
However, it is important to note that obtaining a comprehensive understanding of the noise
effect requires a thorough investigation, which is currently the subject of ongoing research.
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