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ABSTRACT

In this paper we study mechanisms of the phase synchronization in a model network of Van der Pol oscillators
and in the neural network of the brain by consideration of macroscopic parameters of these networks. As the
macroscopic characteristics of the model network we consider a summary signal produced by oscillators. Similar
to the model simulations, we study EEG signals reflecting the macroscopic dynamics of neural network. We show
that the appearance of the phase synchronization leads to an increased peak in the wavelet spectrum related
to the dynamics of synchronized oscillators. The observed correlation between the phase relations of individual
elements and the macroscopic characteristics of the whole network provides a way to detect phase synchronization
in the neural networks in the cases of normal and pathological activity.

Keywords: Complex network, electroencephalogram, continuous wavelet transform, oscillatory patterns, phase
synchronization

1. INTRODUCTION

Studying brain dynamics and functions is one of the most widespread problems in the modern neuroscience,
biophysics and medicine.1,2 It is important in many areas of science dealing with the diagnostics and the
treatment of brain disfunctions, the development of brain-computer interfaces, etc.3 Interactions between a huge
number of neurons lead to the appearance of local synchronous modes in different areas of the brain or, in some
cases, to global synchronous states defining different types of cognitive functions.4

Currently, macroscopic signals reflecting the electrical activity of the neural network of the brain such as, e.g.,
an electroencephalogram (EEG)5 or a magnetoencephalogram (MEG)6 can be recorded with high resolution in
both, space and time. Based on these data it becomes possible to identify specific patterns of neuron activity
and to control the dynamics (e.g., to interrupt pathological activities during epileptic seizures7,8) or to translate
patterns of neural activity into movement commands via special brain-computer interfaces3,9).

Typically, experimental analysis of neural networks is based on the macroscopic signals such as EEG or MEG
that reflect cooperative dynamics of neurons in a certain part of the brain. Electrical activity of individual
neurons can be studied using intracellular recordings providing a way to investigate very small groups of neural
cells (typically, 2-3 neurons from a single recording). Experimental study of larger ensembles is a significantly
more complicated problem. Analysis of the dynamics of neural network based on macroscopic signals and
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revealing correlations between the dynamics of single nodes and the whole network are important problems in
neurodynamics.10

In the given paper we study the dynamics of phases of individual nodes in the complex network of nonlinear
oscillators involved into the global synchronous mode. We analyze a correspondence between distributions of the
phase differences of interacting oscillators and the wavelet spectrum of the macroscopic dynamics of the network.
As an example, we consider the network of N = 150 Van der Pol oscillators.11–13 The observed network is divided
into subnetworks which are connected via the links between several elements. We analyze the development of
the global synchronous regime in this model that involve elements from subnetworks. We discuss a possible
application of the relations obtained with this model for the multichannel EEG recordings.

2. METHODS

In this study we deal with the macroscopic time-dependent characteristics of a model network. The analyzed
macroscopic signal X(t) reflects a cooperation of the interacting nodes

X(t) =

N
∑

i=1

xi(t), (1)

where xi(t) are microscopic signals produced by each node. Introducing the phase φi of each oscillator as

φi = arctg

(

ẋi

xi

)

(2)

let us consider distribution of the phase differences ∆φ = φi − φj , ∀i, j ∈ [1, N ].

Recent studies15 revealed the possibility to detect structural clusters in adaptive networks based on wavelet
analysis of macroscopic dynamics. Due to this, the signal X(t) is further analyzed with the continuous wavelet
transform14

W (s, τ) =

∫

∞

−∞

X(t)ϕ∗(s, τ)dt, (3)

where s is the time scale parameter, “*” means the complex conjugation, and ϕ(s, τ) is the wavelet function

ϕ(s, τ) =
1√
s
ϕ0

(

t − τ

s

)

. (4)

Here, ϕ0 is the mother wavelet, and τ is the translation parameter. According to earlier studies16–19 we use the
Morlet wavelet

ϕ0(η) = π−
1

4 ejω0ηe−
η
2

2 (5)

with the central frequency ω0 = 2π. In this case, a relation between the Fourier frequency and the scale parameter
can be written as f = 1/s. Aiming to characterize energy of the wavelet transform, we use the absolute value of
the time averaged complex-valued function W (f).

3. RESULTS

As the first example let us consider microscopic signals related to individual nodes as

xi(t) = cos(2πf∗t + ϕi) (6)

Initially, the phases ϕi were normally distributed with the dispersion σ. Figure 1 illustrates the dependence of
|W (f∗)| related to the frequency f∗ for different values of the dispersion σ and different values of N . Reducing
the amplitude of the peak in the wavelet spectrum with the dispersion of phase differences is observed, e.g.,
during the time scale synchronization20–22 in complex networks.23
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Figure 1. The dependence of |W (f∗)| of the signal (6) from the dispersion σ for different numbers of oscillators: N = 500
(solid curve), N = 200 (diamonds), N = 100 (circles), N = 50 (triangles).

As the second example consider the network of N = 150 Van der Pol oscillators, where the dynamics of the
each node is described by the differential equation

d2xi

dt2
− µ(1 − x2

i )
dxi

dt
+ ω2

i xi = ǫ

N
∑

j=1

cij(xi − xj), (7)

Here, i and j are the numbers of individual elements, µ = 1.0 is the control parameter, ǫ is the coupling strength,
ωi is the frequency of each oscillator. The coefficients cij determine links between the elements i and j (cij = 1.0
for interacted oscillators, and cij = 0.0 at the absence of coupling). In this study we use the condition of
bidirectional links cij = cji and the condition of dissipativeness

cii = −
N

∑

j=1

cij , ∀j 6= i. (8)

The analyzed network of Van der Pol oscillators is schematically illustrated in Fig. 2 and is divided into two
subnetworks. Here, we consider subnetworks connected via the bidirectional links between seven elements. The
subnetwork I consists of N1 = 90 elements, and subnetwork II consists of N2 = 60 elements.

In order to demonstrate the development of the global synchronization the frequencies ωi were uniformly
distributed in the range [0.2, 0.4], and the wavelet spectra of the macroscopic signal (1) were estimated for
different values of the coupling strength. All oscillators demonstrate the synchronous mode with the increased
coupling strength ǫ. The corresponding wavelet spectra are shown in Fig. 2,b for several values of ǫ: ǫ = 0.3
(curve 1), ǫ = 0.5 (curve 2), ǫ = 0.7 (curve 3), and ǫ = 0.9 (curve 4). There is a clearly expressed peak in
the wavelet spectrum whose amplitude depends on ǫ. Taking into account results of the first example, one can
assume that this is caused by decreased dispersion of distribution of the phase differences, i.e. by the phase
synchronization.

Aiming to analyze this phenomenon, consider distributions of the phase differences in the each subnetwork
and plot the dependencies of theer dispersion versus the coupling strength. The results are presented in Fig. 2,c.
Curves 1 and 2 correspond to the subnetwork I and subnetwork II, respectively. One can see that the decreased
dispersion of distribution of the phase differences is accompanied by the increased amplitude of the peak by
analogy with the performed analysis of the signal (6).

Evolution of distributions of the phase differences in the analyzed subnetworks is illustrated in Fig. 3. Figures
(a,c,e,g) correspond to elements of the subnetwork I and (b,d,f,h) – to elements of the subnetwork II. One can
see a decrease of the dispersion of these distributions with the increased coupling strength.
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Figure 2. The analyzed network of Van der Pol oscillators (a), wavelet energy spectra of the macroscopic signal (1) for
different values of ǫ (b), and the dependencies of the dispersion of distributions of the phase differences versus the coupling
strength for both subnetworks (1 and 2, respectively) (c).
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Figure 3. Distributions of the phase differences between Van der Pol oscillators for different values of the coupling strength
ǫ: ǫ = 0.3 (a,b), ǫ = 0.5 (c,d), ǫ = 0.7 (e,f ), ǫ = 0.9 (g,h). Figures (a,c,e,g) correspond to elements of the subnetwork I
and (b,d,f,h) are related to elements of the subnetwork II. Solid curves correspond to the Gaussian functions used for the
approximation of the distributions.

Further we considered the network of Van der Pol oscillators (Fig. 2,a), where the frequencies are distributed
in two different ranges related to each subnetwork. Here, we used non-overlapping ranges [0.1, 0.3] and [0.3, 0.5].
The results are shown in Fig. 4.

At small coupling strength, there are two different peaks in the wavelet spectrum of the macroscopic signal
associated with the whole network (curve 1 in Fig. 4,a). These peaks are related to the dynamics of both
subnetworks, where the oscillators are in the synchronous modes with certain frequencies. Increased ǫ leads to
the emergence of the global synchronization involving oscillators from the whole network (curve 4 in Fig. 4,a).
In Fig. 4,b, the values of σ are shown for different values of the coupling strength. It is clearly seen, that for
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Figure 4. Wavelet energy spectra for the case when the frequencies of oscillators related to subnetworks I and II are
distributed over different ranges (a). Four spectra are obtained for different values of the coupling strength ǫ: ǫ = 0.5
(curve 1), ǫ = 0.7 (curve 2), ǫ = 1.0 (curve 3), ǫ = 1.5 (curve 4). (b) Dispersion σ of the phase distribution corresponding
to subnetwork I (curve 1) and subnetwork II (curve 2) depending on the coupling strength ǫ.

ǫ < 1.0 the dispersion related to subnetwork II rapidly decreases while the dispersion of the phase differences in
subnetwork I weakly increases. Such behaviour correlates with the evolution of wavelet spectra. According to
Fig. 4,a the peak corresponding to subnetwork II grows while the peak corresponding to subnetwork I becomes
lower. Figure 4,a also demonstrates that the observed peaks become merged that indicates the regime of the
global synchronization. It is important to note that this regime is characterized by increased dispersion of
distribution of the phase differences in both subnetworks. As the result, the corresponding spectral peak (curve
4 in Fig. 4,a) decreases.

4. POSSIBLE APPLICATION OF THE PROPOSED APPROACH
TO ANALYSIS OF NEURONAL NETWORK OF THE BRAIN

In this section we discuss the possibility of application of the obtained results to analyze neural network of
the brain. For this purpose we shall use two signals of multichannel EEG taken from different regions of the
rat’s brain during the emergence of seizures of the absence epilepsy. EEGs were recorded in six male WAG/Rij
rats (one year old, body weigh 320–360 g).24,25 Experiments were performed in the laboratory of Biological
Psychology, Donders Institute for Brain, Cognition and Behavior of Radboud University Nijmegen (Netherlands).
The experiments were conducted in accordance with the legislations and regulations for animal care and were
approved by the Ethical Committee on Animal Experimentation of the Radboud University Nijmegen. Distress
and suffering of animals were kept to a minimum. Recording electrodes were implanted epidurally over the
frontal cortex for the reason that SWDs and sleep spindles showed their amplitude maximum in this region.
Ground and reference electrodes were placed over the two symmetrical sides of the cerebellum. Multichannel
EEG recordings were made in freely moving rats continuously during a period of 2 h. EEG signals were fed into
a multi-channel differential amplifier via a swivel contact, band-pass filtered between 0.5 and 100 Hz, digitized
with 1024 samples/s/per channel (CODAS software).

Typical EEG signals containing spontaneous spike-wave discharges (but not pharmacologically induced seizures)
are shown in Fig. 5. Spike-wave discharges are electroencephalographic hallmarks of generalized idiopathic epilep-
sies, such as the absence epilepsy and other syndromes. They can happen when synchronization in the neural
network becomes too high (hyper-synchronization), or when cortical neurons express too strong excitation (hyper-
excitation) in response to a thalamic input. So, there is considerable interest in the use of network approaches
to study of synchronization of neural network before and during epileptic seizures.
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In Fig 5, wavelet energy spectra of these signals are shown for the time moments t1 = 120 s (before spike-wave
discharge) and t2 = 125 s (the onset of the seizure).
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Figure 5. Multichannel EEG signals taken from different parts of the rat brain (a,b) and the wavelet energy spectra of
these signals at the time moments t1 = 120 s and t2 = 125 s (c,d)

During the onset of epileptic activity the neurons in the considered areas of the brain demonstrate synchronous
oscillations with the frequency fSWD ≈ 7 Hz (s ≈ 0.15 s). This activity is observed in the wavelet spectra as
the peak related to the corresponding time scale (or frequency) (Fig 5,c). The development of seizures is
associated with increased strength of coupling between the areas of brain and, similar to the considered Van der
Pol oscillators, indicates the emergence of the phase synchronization in neuron ensemble. This synchronization
results in the increased spectral peaks in the wavelet spectra (Fig 5,d).

5. CONCLUSION

In this work we considered the emergence of synchronous modes in a network of Van der Pol oscillators with
increased strength of coupling between individual oscillators. We showed a correspondence between the phases of
single oscillators and the wavelet spectrum of the macroscopic signal, produced by the whole network. According
to the obtained results, phase synchronization between network’s elements leads to increased spectral peaks
related to the synchronous regime. Increased wavelet energy was also demonstrated for EEG signals recorded
from rat’s brain during the onset of the epileptic seizure.
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