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Intermittent behavior near the boundary of chaotic phase synchronization in the presence of
noise (when deterministic and stochastic mechanisms resulting in intermittency take place
simultaneously) is studied. The noise of small intensity is shown to do not affect on the char-
acteristics of intermittency whereas the noise of large amplitude induces new effects near
the boundary of the synchronous regime. In the first case the eyelet intermittency takes
place near the boundary of the synchronous regime, in the second one the ring intermittency
or coexistence of both types of intermittency is realized. Main results are illustrated using
the example of two unidirectionally coupled Rössler systems. Similar effects are shown to
be observed in coupled spatially distributed Pierce beam–plasma systems.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Intermittency is an ubiquitous phenomenon in nonlin-
ear sciences. It is observed, in particular, at transition from
periodic oscillations to the chaotic ones as well as at the
boundaries of the synchronous regime onset [1]. Intermit-
tent behavior precedes almost all known types of chaotic
synchronization, with the mechanisms of their arising
and characteristics of intermittency being different for var-
ious synchronization types. In particular, near the bound-
aries of lag [4], generalized [5] and noise-induced
synchronization [6] on–off intermittency takes place.
These types of intermittent synchronous behavior are also
called as intermittent lag synchronization, intermittent
generalized synchronization and intermittent noise-
induced synchronization, respectively. In turn, near the
boundary of phase synchronization eyelet [2] or ring [3]
intermittencies (called also as intermittent phase
synchronization) are realized. Eyelet intermittency
corresponds to the small values of the control parameter
detuning of interacting systems whereas the ring intermit-
tency is observed for the relatively large values of the con-
trol parameter mismatch. These types of intermittency are
characterized by different mechanisms of the arising and
different statistical characteristics of the laminar phase
lengths (see Section 3 for details). In particular, in the ring
intermittency regime attractor of one of interacting sys-
tems is phase-incoherent whereas for the eyelet intermit-
tency both attractors remain phase-coherent.

All mechanisms resulting in the intermittent behavior
may be divided, generally, into two large classes, the
deterministic and stochastic ones. The majority of the
intermittent manifestations is caused by the deterministic
mechanisms, e.g., all intermittencies observed in the vicin-
ity of the chaotic synchronization boundaries refer to the
deterministic class. One of the interesting types of deter-
ministic intermittent synchronous behavior is the inter-
mittent time scale synchronization [7] which is related
closely to the phase synchronization regime [8]. The type
of intermittency realized in this case depends both on
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the value of the control parameter mistuning and time
scale of observation. If interacting systems are detuned
slightly from each other, the eyelet intermittency takes
place [2] near the onset of the synchronous regime. For
the large values of parameter mismatch the ring intermit-
tency [3] is realized. The same type of intermittency is
observed for the time scale synchronization regime at the
boundary time scales of observation independently on
the value of the control parameter mismatch [7], whereas
on the boundary of such regime the eyelet intermittency,
the ring intermittency or the coexistence of both types of
intermittency, i.e. the so-called intermittency of intermit-
tencies, takes place [9].

External noise is known to influence sufficiently on the
nonlinear regimes (see, e.g., [10–15]) and characteristics of
intermittency [16]. In particular, the effect of noise on the
non-autonomous periodic system being in the synchro-
nous regime results in the appearance of intermittency
(the type I intermittency in the presence of noise) [17,18]
which characteristics are closely connected with the eyelet
ones [19].

The present paper aims to consider the intermittency
phenomenon when both mechanisms (the deterministic
and stochastic ones) resulting in the intermittent behavior
take place simultaneously. We analyze the influence of
noise on the characteristics of intermittent phase synchro-
nization in the case of a relatively small values of the con-
trol parameter mismatch between both interacting
systems with a small number of degrees of freedom (cou-
pled chaotic Rössler oscillators [20]) and spatially
extended chaotic media (Pierce beam–plasma diodes
[21,22]). In these cases two mechanisms resulting in the
intermittent behavior are presented. One of them is con-
nected with the deterministic dynamics of the system,
whereas the second one is the manifestation of the sto-
chastic behavior. As would be shown below the noise of
small intensity does not practically affect on the character-
istics of intermittency whereas the noise of large ampli-
tude is able to induce new features in the characteristics
of intermittency.
2. System under study

Let us analyze the characteristics of intermittent phase
synchronization in the presence of noise using the example
of two unidirectionally coupled chaotic Rössler oscillators.
The system under study is given by

_x1 ¼ �x1y1 � z1;

_y1 ¼ x1x1 þ ay1;

_z1 ¼ pþ z1ðx1 � cÞ;
_x2 ¼ �x2y2 � z2 þ eðx1 � x2Þ;
_y2 ¼ x2x2 þ ay2 þ Dn;
_z2 ¼ pþ z2ðx2 � cÞ;

ð1Þ

where x1;2ðtÞ ¼ ðx1;2; y1;2; z1;2ÞT are state vectors of the drive
and response systems, respectively, a ¼ 0:15; p ¼ 0:2;
c ¼ 10;x1 ¼ 0:93;x2 ¼ 0:95 are the control parameter val-
ues, n is a random Gaussian process with zero mean and
unit variance, D is a noise intensity.
To integrate the stochastic differential equations (1) we
have used the four order Runge–Kutta method adapted for
the stochastic differential equations [23] with time step
Dt ¼ 0:001. Detection of the phase synchronization regime
has been performed by the analysis of the time dependen-
cies of the phase differences of interacting systems and tes-
tifying the phase locking condition

jD/j ¼ j/1ðtÞ � /2ðtÞj < const: ð2Þ

The phases /1;2ðtÞ of chaotic signals have been intro-
duced into consideration in traditional way as rotation
angles on ðx1;2; y1;2Þ-planes [8].

3. Intermittency near the boundary of the phase
synchronization regime in coupled Rössler oscillators

First of all we analyze the influence of the noise inten-
sity on the boundary value of the phase synchronization
regime onset in system (1). The results of our calculations
show that if the noise intensity exceeds the certain critical
value the synchronous regime starts destructing due to the
loss of the phase coherence of the response system attrac-
tor. It is clear that in the fields where the boundary of the
synchronous regime is not changed dramatically (D 6 9)
the noise will not affect sufficiently both on the boundary
of the synchronous regime onset and characteristics of
intermittency taking place near that boundary. At the same
time, in the field of the loss of the phase-coherence of the
response system attractor (D P 9) the noise is able to bring
new features in the characteristics of intermittency.

To define the type of intermittency realized in the sys-
tem under study we use the rotating plane approach ini-
tially proposed in [3] and used successfully in recent
papers [24,7,9]. We analyze the behavior of the response
system (1) on the plane

x0 ¼ x2 cos /1 þ y2 sin /1;

y0 ¼ �x2 sin /1 þ y2 cos /1;
ð3Þ

rotating with the frequency of the drive system. Here
/1 ¼ /1ðtÞ is the phase of the drive system. In Fig. 1 the
phase differences D/ðtÞ (a,b), rotating planes (c,e,g,i) and
phase portraits (d,f,h,j) of the response system (1) for dif-
ferent values of the coupling parameter e and noise inten-
sity D are shown. Fig. 1a, c, d, curve 1 corresponds to the
case when in two unidirectionally coupled Rössler systems
(1) the synchronous dynamics is observed. In this case the
phase difference is locked, the response system attractor is
phase-coherent and phase trajectory of the response oscil-
lator looks like a smeared fixed point which does not
envelop the origin on the rotating plane. Below the bound-
ary of the synchronous regime in the case when the noise
intensity is small enough as well as in the case of the
absence of noise the eyelet intermittency takes place (see
Fig. 1a, e, f, curve 2). The phase difference in such case con-
tains time intervals of synchronized motion persistently
and intermittently interrupted by sudden phase slips dur-
ing which the value of jD/j jumps up 2p. The response sys-
tem attractor in this regime is also phase-coherent but the
trajectory on the rotating plane is represented by a
smeared limit cycle [3]. The growth of the noise intensity



Fig. 1. Phase differences D/ðtÞ (a,b) and phase trajectories of the response Rössler system on the rotating plane ðx0; y0Þ (c,e,g,i) and phase portraits of the
same response system on ðx2; y2Þ-plane (d,f,h,j): (a,c,d), curve 1—the synchronous regime (e ¼ 0:045;D ¼ 1:5), (a,e,f), curve 2—the eyelet intermittency
(e ¼ 0:038;D ¼ 1:5), (b,g,h), curve 3—the ring intermittency (e ¼ 0:045;D ¼ 10), (b,i,j), curve 4—the intermittency of eyelet and ring intermittencies
(e ¼ 0:038;D ¼ 10).
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changes the properties of the response system attractor
remarkably, i.e. it becomes principally phase-incoherent
(see Fig. 1h, j) and the phase trajectory on the rotating
plane starts enveloping origin (Fig. 1g, i). The phase slips
in such regimes become more frequent (see Fig. 1b) that
is connected with a strong noise influence. At the same
time, the envelop of the origin by the phase trajectory
can be performed in two different ways. If the coupling
parameter exceeds the boundary value of the phase syn-
chronization regime onset in the absence of noise but for
the selected value of the noise intensity the phase synchro-
nization does not exist the phase trajectory is represented
by a smeared fixed point enveloping origin (Fig. 1g). In that
case in the system under study the ring intermittency is
realized [3]. If the coupling parameter is less than the
threshold value of the phase synchronization in the
absence of noise the phase trajectory on the rotating plane
looks like a smeared limit cycle enveloping origin (Fig. 1i).
In this case the intermittency of eyelet and ring intermit-
tencies takes place simultaneously [9]. It should be noted
that in both considered cases the dynamics of the phase
difference is qualitatively identical to each other (compare
Fig. 1b curves 3 and 4). This may be connected with the fact
that the most part of phase slips in the regime of intermit-
tency of intermittencies is associated with the ring
intermittency.

To confirm the presence of the types of intermittency
mentioned above near the boundary of the phase synchro-
nization in the presence of noise we analyze the statistical
characteristics of intermittency such as the distributions of
the laminar phase lengths for the fixed values of the
control parameters and dependence of the mean length
of the laminar phases on the coupling parameter. Both eye-
let and ring intermittencies are known to be characterized
by the exponential distributions of the laminar phase
lengths

pðsÞ ¼ 1
T1;2

exp � s
T1;2

� �
ð4Þ

where T1;2 are mean lengths of the laminar phases for eye-
let T1 and ring T2 intermittencies [19,3], whereas the
dependence of the mean length of the laminar phases for
eyelet intermittency obeys the law

T1 ¼ K exp jðec � eÞ�1=2
; ð5Þ

or, in the other form,

ln 1=T1 ¼ C � jðec � eÞ�1=2
; ð6Þ

where ec is a critical value of the coupling parameter corre-
sponding to the onset of the phase synchronization, K,
C ¼ ln 1=K and j are the parameters of approximation
[25,26]. In Ref. [9] we have shown that in the regime of
intermittency of eyelet and ring intermittencies the lami-
nar phase length distribution should be written as

pðsÞ ¼ exp �s=T1ð Þ
ðT1 þ T2Þ

1� s
T1

� �
C 0;

s
T2

� �

þ T2
1 þ T2

2

T1T2ðT1 þ T2Þ
exp � s

T1
� s

T2

� �

þ exp �s=T2ð Þ
ðT1 þ T2Þ

1� s
T2

� �
C 0;

s
T1

� �
: ð7Þ
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Here Cða; zÞ is incomplete C-function, at that the mean
length of the laminar phases for this type of intermittent
behavior obeys relation

T ¼ �
T2

1 log T1þT2
T1

� �
� 2T1T2 þ T2

2 log T1þT2
T2

� �
T1 þ T2

; ð8Þ

where T1;2 can be obtained numerically for the regimes
when the only one type of intermittent behavior should
exist [9].

In Fig. 2 the distributions of the laminar phase lengths
for all types of intermittency mentioned above and their
theoretical approximations by relations (4) and (7) are
shown. It is clearly seen that the numerically obtained data
are in a good agreement with the results of theoretical pre-
dictions that confirms the possibility of realization of dif-
ferent types of intermittency near the boundary of the
phase synchronization in the presence of noise. The addi-
tional proof of the presence of eyelet intermittency, ring
intermittency or intermittency of intermittency (coexis-
tence of eyelet and ring intermittencies) near the synchro-
nization boundary is the dependence of the mean length of
the laminar phases on the coupling parameter. Due to the
fact that the appearance of turbulent phases associated
with the ring intermittency does not practically depend
on the coupling parameter we analyze the statistics of
the mean lengths of the laminar phases for only two types
of intermittency, namely, the eyelet intermittency and
intermittency of eyelet and ring intermittencies. In Fig. 3
the dependencies of the mean lengths of the laminar
phases on the coupling parameter obtained numerically
for both types of intermittency mentioned above as well
as their theoretical approximations (5) and (8) are shown.
It is clearly seen that the data obtained numerically are in
excellent agreement with the theoretical relations. The
Fig. 2. Distributions of the laminar phase length in the regimes of eyelet inte
intermittencies (D ¼ 10; e ¼ 0:038, curve 2) and ring intermittency (D ¼ 10; e ¼
are marked by points, their theoretical approximations are shown by solid lin
2—T1 ¼ 12533; T2 ¼ 3300, 3—T2 ¼ 3300.
coefficients for the regularity given by (5) have been
obtained by means of application of the least square
method to the dependence of ln 1=T on ðec � eÞ�1=2 shown
in the frame. One can see that such dependence obeys rela-
tion (6) in full agreement with the theory of eyelet
intermittency.
4. Intermittency of intermittencies in coupled spatially
distributed beam–plasma systems

So, in two unidirectionally coupled Rössler systems
near the boundary of the phase synchronization in the
presence of noise depending on the value of the coupling
parameter and noise intensity the eyelet intermittency,
the ring intermittency or coexistence of eyelet and ring
intermittencies can exist. To extend obtained results on
other systems capable to demonstrate the phase synchro-
nization regime in the presence of noise let us analyze
the intermittent behavior near the boundary of the syn-
chronous regime in two unidirectionally coupled spatially
distributed beam–plasma systems (Pierce diodes) which
dynamics in the fluid electronic approximation is
described by the self-congruent system of dimensionless
Poisson, continuity and motion equations

@2u1;2

@x2 ¼ � a1;2ð Þ2ðq1;2 � 1Þ;

@q1;2

@t
¼ �

@ðq1;2v1;2Þ
@x

;

@v1;2

@t
¼ �v1;2

@v1;2

@x
þ
@u1;2

@x
;

ð9Þ

with the boundary conditions

v1;2ð0; tÞ ¼ 1; q1;2ð0; tÞ ¼ 1; u1;2ð0; tÞ ¼ 0; ð10Þ
rmittency (D ¼ 1:5; e ¼ 0:038, curve 1), intermittency of eyelet and ring
0:045, curve 3) and their theoretical approximations. The numerical data
es. The parameters of approximations are the following: 1—T1 ¼ 10593,



Fig. 3. Dependence of the mean length of the laminar phases on the coupling parameter in the regimes of eyelet intermittency (D ¼ 1:5, curve 1) and
intermittency of eyelet and ring intermittencies (D ¼ 10, curve 2) and their theoretical approximations. The numerical data are marked by points, their
theoretical approximations are shown by solid lines. In the frame the dependence 1 in the form (6), i.e. the dependence of lnð1=TÞ on ðec � eÞ�1=2 is shown.
The parameters of approximations are the following: K ¼ 4:545;j ¼ 0:489; ec ¼ 0:042;C ¼ �1:514.
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where u1;2ðx; tÞ is the dimensionless potential of the elec-
tric field, q1;2ðx; tÞ and v1;2ðx; tÞ are the dimensionless den-
sity and velocity of the electron beam (0 6 x � 1), the
indices ‘‘1’’ and ‘‘2’’ correspond to the drive and response
coupled beam–plasma systems, respectively [21,27]. The
unidirectional coupling between such systems is realized
by the modification of the boundary conditions on the
right boundary of the systems, in the same way as it has
been done in [28]

u1ð1; tÞ ¼ 0;
u2ð1; tÞ ¼ eðq2ðx ¼ 1; tÞ � q1ðx ¼ 1; tÞÞ þ DnðtÞ:

�
ð11Þ

The term DnðtÞ corresponds to the noise influence on the
system, where nðtÞ is stochastic Gaussian process with zero
mean and unit variance, D is the noise intensity. Continuity
and motion equations of (9) have been integrated numeri-
cally with the help of the one-step explicit two-level
scheme with upstream differences and the Poisson equa-
tion has been solved by the method of the error vector
propagation [29]. The time and space integration steps
have been taken as Dt ¼ 0:003 and Dx ¼ 0:005, respec-
tively. The control parameters of Pierce diodes have been
chosen as a1 ¼ 2:858p and a2 ¼ 2:860p. As in the case of
Rössler systems described above the phase synchroniza-
tion has been detected by the verification of phase locking
condition (2). The phases of the drive and response Pierce
diodes have been introduced into consideration as rotation
angles on ðq1;2ðx ¼ 0:2; tÞ;q1;2ðx ¼ 0:6; tÞÞ-plane as well as
it has been done in [30].

The numerical simulation of system (9) with the bound-
ary conditions 10,11 shows that as in the case of system (1)
the synchronous regime in two unidirectionally coupled
Pierce diodes starts destructing quickly with the growth
of the noise intensity. At the same time, due to the specific-
ity of the system itself, the Pierce diodes are more sensible
to the influence of noise in comparison with the Rössler
systems. Therefore, the new effects for such spatially
extended media are revealed for a relatively small values
of the noise intensity.

Fig. 4 illustrates the dynamics of the phase differences
D/ðtÞ (a,b) and behavior of the response Pierce diode both
on the plane ðx0; y0Þ rotating with the frequency of the drive
Pierce diode defined by (3) with x2 ¼ q2ðx ¼ 0:2; tÞ,
y2 ¼ q2ðx ¼ 0:6; tÞ ðc; e; g; iÞ and on ðq2ðx ¼ 0:2; tÞ;
q2ðx ¼ 0:6; tÞÞ-plane ðd; f ;h; jÞ in different regimes. It is
clearly seen that Fig. 4 is qualitatively identical to Fig. 1.
In particular, if the noise intensity is small enough in the
synchronous regime the phase difference is bounded (see
Fig. 4a, curve 1) and the response system attractor on the
rotating plane looks like a smeared fixed point which does
not envelop the origin (see Fig. 4c and compare it with the
Fig. 1c). The reconstructed attractor in this case is phase-
coherent (Fig. 4d). Near the boundary of the phase syn-
chronization regime in the case of the small values of the
noise intensity the eyelet intermittency takes place. In this
case the phase difference contains sudden rare enough
phase slips (Fig. 4a, curve 2), the response system attractor
is also phase-coherent (Fig. 4f), and the phase trajectory on
the rotating plane represents the smeared limit cycle
which does not touch the origin (Fig. 4e).

The behavior of the Pierce diodes is changed dramati-
cally if the noise intensity becomes a big enough (Fig. 4b,
g–j). Both for the coupling parameter values corresponding
to the synchronous regime in the absence of noise
(e ¼ 0:058) as well as for the asynchronous one
(e ¼ 0:006) the dynamics of the phase difference in the
presence of noise is characterized by sharp decrease of its
value (Fig. 4b) and the response system attractor is
phase-incoherent (Fig. 4h, j). At that, if in the absence of
noise in the system under study the synchronous regime
is realized in the same system in the presence of noise of
a relatively large amplitude the ring intermittency takes
place. The response system attractor on the rotating plane
looks like a smeared fixed point enveloping origin in this
case (Fig. 4g). For the coupling parameter value



Fig. 4. Phase differences D/ðtÞ (a,b) and phase trajectories of the response Pierce diode on the rotating plane ðx0; y0 Þ (c,e,g,i) and phase portraits of the same
response system on ðq1;2ðx ¼ 0:2; tÞ;q1;2ðx ¼ 0:6; tÞÞ-plane (d,f,h,j): (a,c,d), curve 1—the synchronous regime (e ¼ 0:058, D ¼ 10�5), (a,e,f), curve 2—the eyelet
intermittency (e ¼ 0:006;D ¼ 10�5), (b,g,h), curve 3—the ring intermittency (e ¼ 0:058, D ¼ 0:03), (b,i,j), curve 4—the intermittency of eyelet and ring
intermittencies (e ¼ 0:006;D ¼ 0:03).
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corresponding to the eyelet intermittency in the absence of
noise in the Pierce diodes subjected to the strong noise
influence the coexistence of eyelet and ring intermittencies
takes place. The response system attractor in such regime
is represented by a smeared limit cycle enveloping origin
(Fig. 4i).
5. Conclusion

In conclusion, both in systems with a small number of
degrees of freedom (two unidirectionally coupled Rössler
oscillators) and spatially extended beam–plasma media
(two Pierce diodes in the case of unidirectional coupling)
the intermittent behavior near the boundary of the phase
synchronization in the presence of noise is observed. At
that, in all considered cases the noise of small intensity
does not almost influence on characteristics of intermit-
tency, i.e. in the case of the small values of parameter mis-
match near the boundary of phase synchronization the
eyelet intermittency takes place. The increase of the noise
intensity results in the growth of the threshold value of the
synchronous regime onset stipulated by the loss of the
phase coherence of the response system attractor. Conse-
quently, on the boundary of the phase synchronization in
the supercritical region of the control parameters the ring
intermittency comes into being whereas in the subcritical
one the coexistence of ring and eyelet intermittencies
takes place. The found behavior is assumed to possess a
high level of generality. One can expect that similar
regularities would be observed for the wide class of real
systems.
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