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Abnormal spectral and scale‑free 
properties of resting‑state EEG 
in girls with Rett syndrome
Olga Sysoeva 1,2*, Vladimir Maximenko 3,4, Alexander Kuc 4, Victoria Voinova 5,6, 
Olga Martynova 2 & Alexander Hramov 3,4

Spontaneous EEG contains important information about neuronal network properties that is valuable 
for understanding different neurological and psychiatric conditions. Rett syndrome (RTT) is a rare 
neurodevelopmental disorder, caused by mutation in the MECP2 gene. RTT is characterized by severe 
motor impairments that prevent adequate assessment of cognitive functions. Here we probe EEG 
parameters obtained in no visual input condition from a 28‑channels system in 23 patients with Rett 
Syndrome and 38 their typically developing peers aged 3–17 years old. Confirming previous results, 
RTT showed a fronto‑central theta power (4–6.25 Hz) increase that correlates with a progression of 
the disease. Alpha power (6.75–11.75 Hz) across multiple regions was, on the contrary, decreased 
in RTT, also corresponding to general background slowing reported previously. Among novel results 
we found an increase in gamma power (31–39.5 Hz) across frontal, central and temporal electrodes, 
suggesting elevated excitation/inhibition ratio. Long‑range temporal correlation measured by 
detrended fluctuation analysis within 6–13 Hz was also increased, pointing to a more predictable 
oscillation pattern in RTT. Overall measured EEG parameters allow to differentiate groups with high 
accuracy, ROC AUC value of 0.92 ± 0.08, indicating clinical relevance.

Spontaneous electrical activity of the brain (EEG, electroencephalogram) contains information about human 
state and individuality. EEG as a direct measure of postsynaptic currents can be used to non-invasively dig into 
the neurophysiological processes’ dynamics with milliseconds resolution. Traditionally, EEG spectra are divided 
into subbands with different functional properties (delta: < 4 Hz, theta: 4–7 Hz, alpha: 8–13 Hz, beta: 14–30 Hz 
and gamma: > 30 Hz), however these boundaries are rather artificial. In general, the slower the oscillation the 
larger the population of neurons it can engage. Different oscillations from different regions overlap and interact, 
reflecting neurophysiological and psychological  processes1,2. Recently, new properties of spontaneous EEG were 
described and became increasingly popular. For example, it was shown that EEG exhibits scale-free temporal 
patterns, including slowly decaying autocorrelation, called long-range temporal correlation (LRTC 3). LRTC is 
suggested to reflect the ability of neural networks to integrate information over relatively long time intervals.

Spontaneous EEG is often used in clinics as an additional tool for diagnostic purposes as well as to define 
optimal treatment plans. For example, many neurodevelopmental disorders are characterized by increased low-
frequency  power4,5. At the same time, particular combinations of different properties of resting EEG can point 
to specific neurophysiological abnormalities and allow differential  diagnosis6.

Rett Syndrome (RTT) is the rare neurodevelopmental disorder characterized by poor motor and cognitive 
skills that is also hard to assess due to lack of speech and problems with voluntary  movements7. RTT is character-
ized by initially normal development followed by regression usually occurring within the first three years of life. 
After this period the condition can be relatively stable. Most cases of this disorder are attributed to MECP2 gene 
dysfunction and is found in  girls8. While genetic etiology of the disorder is established and behavioral phenotype 
is well described, neurophysiological level of dysfunction is not well understood, as no crucial abnormalities that 
can explain such drastic behavioral problems is still identified. At the same time, objective neurophysiological 
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biomarkers of RTT severity are of high importance e.g. to serve as an output measure for clinical trials that run 
for this disorder.

Previous studies showed several abnormalities in spontaneous EEG in RTT (for review  see5). Here we plan 
to verify them in an independent sample of girls with RTT as well as to examine the long-range temporal cor-
relation in this disorder that was never done before.

While Rett Syndrome incidence is 1:10,000–20,000, understanding its pathophysiology sheds light into 
the fundamental question of the mechanistic link between genetic mutations, brain processes and behavior. 
Moreover, MECP2 path is disturbed in a sufficient number of patients with autism spectrum  disorders9 and, 
thus, establishing the neurophysiological marker of RTT severity will help to better understand and treat these 
disorders as well.

Method
Participants. Children with Rett syndrome (RTT, n = 23, 3.7–17.1 years, M = 9.1, SD = 4.1 years, all females) 
and typically developed children (TD, n = 38, 3.04–16.9 years, M = 9.8, SD = 3.3 years, 27 females) participated in 
the experiment. RTT patients were recruited during clinical visits to the Research Clinical Institute of Pediatrics 
in Moscow, Russian Federation. The diagnosis was based on current diagnostic  criteria7 and was confirmed 
clinically by a medical doctor specializing in this population (V.V.) as well as via genetic testing (all with MECP2 
abnormalities). Severity of RTT was measured using the Rett Syndrome Severity Scale (RSSS)10. History of sei-
zures were reported for 9 RTT patients from our group.

Parents or legal guardians have given written informed consent to their children’s participation in the study, 
after the procedure was explained to them. Children have given verbal consent to participate and where possible, 
assent from the patient was also ascertained. The research procedure was approved by the ethical committee of 
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, IHNA and Nph RAS 
(protocol №2 on April 30th, 2020). All aspects of the research conformed to the tenets of the Declaration of 
Helsinki.

EEG recording. The EEG recording from 23 channels (10–20 scheme) was organized in blocks of 30  s 
recordings with alternating eyes open, passive hand movement and no visual input condition. As RTT patients 
are hard in following instructions, for all children we used an airplane mask for no visual input condition to 
simulate fixation-off condition. Here we focus on EEG from the block with no visual input (epoched of 30 s, 
n = 3–9). Raw EEG signals were filtered in the range of 1–40 Hz using FIR filter, and independent component 
analysis (ICA) was used to remove artifacts (Fieldtrip  toolbox11). Additionally, ICA decompositions were exam-
ined for artifacts using the open-source Crowdsourcing Platform for Automatic Labeling of Independent Com-
ponents in Electroencephalography  (ALICE12, http:// alice. adase. org/). Finally, all signals were re-referenced to 
the common reference.

Spectral analysis. We calculated wavelet power (WP)

where x(t) is the raw EEG signal, F = 4–40 Hz is the frequency band of interest, ψ(η) is the Morlet wavelet

j =
√
−1, an asterisk indicates a complex conjugation, and σ = n/2π f  . The number of cycles, n , depended on 

the signal frequency, f  , as n = f  . For each subject we averaged WP over time and over the epochs. To minimize 
between-subject variability, we considered normalized wavelet power (NWP) by contrasting WP at each sensor/
frequency to the WP averaged over all sensors and all frequencies. All calculations were performed using the 
Fieldtrip toolbox in MATLAB.

Long‑range temporal correlations. Long-range temporal correlations (LRTC) were assessed by 
detrended fluctuation analysis (DFA). This parameter estimates the statistical self-affinity of the signal. After 
the preprocessing procedure, all epochs were loaded to the Neurophysiological Biomarker Toolbox (NBT, 
http:// www. nbtwi ki. net/) and we strictly followed the pipeline, described by Hardstone and colleagues for DFA 
 calculation13. First, we filtered the signal in the range of 6–13 Hz using a FIR filter and got the amplitude enve-
lope using the Hilbert transform. Following recommendation, the filter order was automatically set by the NBT 
toolbox ensuring that at least two 6 Hz oscillations cycles were covered by the filter window. The fluctuations 
were calculated in the frequency band of 6–13 Hz, using 50% overlapping windows from 0.8 to 30 s, and the DFA 
exponent was found by fitting from 2 to 15 s. For each subject, we averaged the DFA exponent over all epochs 
and days.

Statistical testing. To contrast NWP and DFA between RTT and TD groups, we used an unpaired t-test 
in conjunction with the nonparametric cluster-based correction for the multiple comparisons and the Monte-
Carlo randomization. Elements that passed a threshold value corresponding to a p-value of 0.001 were marked 
together with their neighboring elements and collected into separate negative and positive clusters. The minimal 
number of required neighbors was set to 0 (a single channel could be considered as a cluster). A cluster was 
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significant when the p-value was below 0.025, corresponding to a false alarm rate of 0.05 in a two-tailed test, as 
we separately examined the hypothesis on the RTT < TD (negative cluster) and RTT > TD (positive cluster). The 
number of permutations was 5000. Analysis was performed in the Fieldtrip toolbox for MATLAB.

As EEG pattern changes with age we examine the relation of the defined EEG-parameters with age by means 
of two-tailed Pearson correlation. Taking into account the direction of alterations revealed by group comparison, 
we examined the link between EEG measures and clinical manifestation of the disorder by one-tailed partial 
Pearson correlation, controlling for age. A Mann–Whitney test was performed to examine the difference between 
RTT patients with and without history of seizures.

A logistic regression was performed to ascertain the effects of significant clusters formed at the previous 
stage of analysis on the likelihood that the child has Rett syndrome (RTT). We used ROC-AUC and fivefold 
cross-validation to evaluate the model’s ability to distinguish between RTT (label: 1) and TD (label: 0) groups.

Results
Spectral analysis. Contrasting normalized wavelet power (NWP) between RTT and TD groups with 
p = 0.001, we found two positive and two negative clusters, where the NWP was significantly increased or 
decreased for patients (Fig. 1). The first positive cluster (further called gamma-cluster, Fig. 1A) with p = 0.0008 
appeared in the frequency band of 31–39.75 Hz and included EEG sensors F4, C3, Cz, P7, P3, Pz, FT8. In this 
cluster, NWP for the TD group (0.047 [95% CIs 0.033 0.072]) was lower than in the RTT group (0.178 [95% 
CIs 0.125 0.235]): RTT—TD = 0.131 [95% CIs 0.075 0.188]. The second positive cluster (Fig. 1B) with p = 0.002 
appeared in the frequency band of 4–6.25 Hz and included EEG sensors Fp2, F3, Fz, F4, F8, Cz, Fpz. In this theta 
cluster, NWP for the TD group (2.67 [95% CIs 2.293 3.103]) was lower than for the RTT group (6.276 [95% 
CIs 4.817 8.227]): RTT—TD = 3.606 [95% CIs 1.95 5.325]. The first negative cluster (Fig. 1C) with p = 0.0002 
appeared in the frequency band of 6.75–11.75 Hz and included EEG sensors F3, T7, P7, P3, Pz, P4, P8, O1, O2, 
Oz, FT7. In this further called alpha1 cluster NWP in the TD group (4.765 [95% CIs 4.082 5.467]) exceed NWP 
in the RTT group (1.756 [95% CIs 1.502 2.039]): RTT—TD = − 3.009 [95% CIs − 3.736 − 2.262]. The second nega-
tive cluster (Fig. 1D) with p = 0.0128 appeared in the frequency band of 8–10.5 Hz and included EEG sensors 
F4, F8. In this alpha2 cluster NWP in the TD group (2.07 [95% CIs 1.798 2.412]) exceed NWP in the RTT group 
(1.094 [95% CIs 0.825 1.495]): RTT—TD = − 0.975 [95% CIs − 1.408 − 0.537].

Long‑range temporal correlations. DFA exponent showed different topographic profiles in the RTT 
and TD groups (Fig. 2A). In the RTT group, there was a local increase in DFA in the frontal and temporal EEG 
sensors bilaterally. The TD group demonstrated high DFA in the frontal midline electrodes. Two positive clusters 
were observed (Fig. 2B). The first cluster with p = 0.0007 includes EEG sensors Fz and Fpz. The mean DFA in 
the RTT group (0.793 [95% CIs 0.732, 0.853]) was higher than in the TD group (0.647 [95% CI 0.618, 0.687]): 
DFA(RTT) – DFA(TD) = 0.145 [95% CI 0.076, 0.214]. The second cluster with p = 0.001 included EEG sensor T7. 
The mean DFA in the RTT group (0.810 [95% CI 0.749, 0.869]) was higher than in the TD group (0.659 [95% CI 
0.627, 0.699]): DFA(RTT) − DFA(TD) = 0.151 [95% CI 0.08, 0.217].

EEG characteristics for group classification. The logistic regression model was statistically significant, 
chi2(5) = 62.535, p < 0.001. The model explained 85.5% (Nagelkerke R2) of the variance in the Rett syndrome and 
correctly classified 91.8% of cases. Figure 3 shows ROC curves for each fold with the mean ROC (solid blue line) 
and standard deviation (a gray area). The dashed line corresponds to the chance level. AUC varied from 0.78 to 
1.00 between the folds achieving a mean value of 0.92 ± 0.08.

Relationship between neurophysiological and clinical measures. Among our EEG measures only 
theta cluster correlated with age in RTT (r(23) = 0.51, p = 0.014), pointing to the worsening of the condition with 
time. As can be seen in Fig. 4A, theta cluster activity did not change with age in typically developing children, 
pointing to the increasing difference between RTT and TD with age. However, even when the effect of age was 
partialed out, the increase in theta power over fronto-central regions positively correlated with severity of RTT 
clinical manifestation (r(20) = 0.42, p = 0.026, Fig. 4B). No other EEG parameters showed significant relation 
with RSS, when taking into account the direction of changes. No significant differences were found between RTT 
patients with and without history of seizures for any significant clusters.

Discussion
This paper examined EEG properties of spontaneous EEG recorded in no visual input condition in search for 
objective neurophysiological markers of RTT as well as its severity. We confirmed some previous findings of a 
few previous quantitative EEG studies such as increased theta and decreased alpha power in RTT 14–16, supporting 
general slowing of background activity in RTT also frequently reported in clinical assessment of these patients 
 (review5). Moreover, our data support the relationship of the increased theta power with patients’ age and RTT 
 symptoms17,18. While relation of the theta increase with the progression of the RTT symptoms is important find-
ing, it also points to its potential low power to detect RTT before the main symptoms are clearly manifested, e.g. 
in the pre-regression stage. Indeed Roche and colleagues found that theta power is even decreased in very young 
RTT patients in the active regression  stage16. Taking into account that predominance of low frequency activity in 
EEG is not specific to RTT and characterizes a number of other neurological conditions and neurodevelopmental 
 disorders19–21, this potential biomarker of RTT severity might be related to general deterioration of brain function.

Gamma activity was examined only in two previous studies of patients with RTT, however, the experimental 
conditions did not match. One  study22 looked at gamma activity during slow wave sleep and suggested increased 
cortical excitability as no typical decrease in gamma power was reported from 2–5 to 6–9 years of age. Another 
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Figure 1.  Difference in EEG spectra between RTT and TD. For each significant cluster you can see: at the first row—
topographic maps, that show the normalized wavelet power (NWP) in the RTT and TD groups (group mean), at the second 
row the t-values as the result of statistical testing the NWP difference between groups with electrodes included in the cluster 
marked by white circles. Darkness of colors in topographic maps represents the increase in absolute values (blue—towards 
negative values, when RTT’s values are smaller than TD’s, and red—towards the positive ones, when RTT’s values are smaller 
than TD’s). Also second row contains the estimation plots that illustrate NWP for the RTT and TD groups (mean, standard 
errors are represented by black vertical line and each dot corresponds with individual values: green for RTT, blue for TD) as 
well as the mean NWP difference between them with the 95% CIs (third vertical line). The last third row contains the NWP 
over the whole spectrum average over the electrodes from the cluster (green line for RTT and blue for TD, shading for 95% 
CIs) with significant between group differences highlighted by the horizontal black line at x-axis. Here we revealed four 
clusters of significant differences: The NWP in the RTT was larger than TD groups in gamma, 31–39.5 Hz (A) and theta, 
4–6.25 Hz (B) bands, and smaller in alpha band, 6.75–11.75 Hz (C) and 8–10.5 Hz (D).
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 study16 examined gamma band response during video watching and did not find any significant results in spite 
of one of the largest sample of RTT girls examined (n = 57). Our study showed increased gamma activity during 
no visual input condition, suggesting increased cortical excitability. Specificity of this result to no visual input 
condition needs to be additionally examined in the future studies. Among other disorders, gamma band activity 
was shown to be increased in ASD, epilepsy, being indicative of higher excitation/inhibition ratio in neuronal 
activity. At the same time, interpreting the gamma band response in EEG should be made with caution as it might 
reflect muscle activity, which overlaps in frequencies with cortical gamma  oscillations23. However, as the gamma 
cluster in our study extends also into the central region this interpretation seems to be inapplicable to our results.

Long-range temporal connectivity provides the measure of scale-free properties of EEG signal, also related 
to the excitation/inhibition balance. Increased DFA coefficient in RTT suggests non-optimal state of neu-
ronal networks that have more predictable activity. This novel result for RTT fits well with previous reports in 

Figure 2.  Difference in the DFA exponent between RTT and TD. (A) Topographic maps show DFA exponent 
in the RTT and TD groups (group mean). (B) Topographic maps reflecting t-values as the result of statistical 
testing the DFA difference between RTT and TD groups. Two significant clusters were revealed with electrodes 
included in the cluster marked by white circles. Darkness of colors in topographic maps represents the increase 
in absolute values. Corresponding estimation plots are shown at the right. mean DFA for the RTT and TD 
groups (mean, standard errors are represented by black vertical line and each dot corresponds with individual 
values: green for RTT, blue for TD) as well as the mean DFA difference between them with the 95% CIs (third 
vertical line).

Figure 3.  Results of the model’s evaluation using ROC-AUC and a fivefold cross-validation.
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neurodevelopmental disorders, such as idiopathic  ASD24 as well as in patients with STXBP1  syndrome25 that 
have increased DFA as well. Among common features of these disorders is comorbidity with epilepsy, which 
is also characterized by increased DFA measure with intracranial recordings near the epileptogenic  region26,27. 
However, ASD with visually detected epileptiform activity showed smaller DFA than ASD without evident EEG 
abnormalities, suggesting some compensatory  mechanism24. Noteworthy, that LRTC of hemoglobin measured 
using fNIRS were smaller in idiopathic  ASD28, pointing to heterogeneity of ASD.

Overall, parameters of EEG recorded during several blocks of 30-s no visual input condition allowed segregat-
ing RTT from TD with high accuracy (ROC AUC = 0.92 ± 0.08), pointing to their clinical relevance.

As Rett syndrome affects mostly girls and our control group was more representative of the general popula-
tion and also included males (about 30%), it is important to discuss the potential effect of biological sex on our 
findings. Surprisingly little is known about resting EEG differences in males and females. Maturational lag was 
reported in girls compared to boys with their theta power being higher and alpha power being lower than in 
 boys29. However, the sex-related differences decreased with age in this study. Recent study from the same research 
 group30 confirmed increased theta, but reported also increased alpha power in females compared to males in 
young adulthood. In our study theta power was not only increased in girls with RTT, but was also related to 
Rett Syndrome severity in patients, thus supporting its clinical relevance. Higher gamma-band activity was also 
observed in adult females as compared to  males31. While this sex-effect might increase the RTT vs. control differ-
ence, it is clearly not a primary factor as seen from the data distribution with TD values largely grouped together 
and separated from most RTT’s measures. Previous  study32 of long-range temporal correlations reported the 
larger DFA in males than in females. Thus, sex-effect here might partially counteract our effect of atypically high 
DFA in girls with RTT decreasing the between group difference that might in fact be even larger.

Among the limitations of our study is the absence of clinical control groups with other neurodevelopmental 
disorders to examine specificity of the obtained pattern of differences to girls with Rett syndrome. It would be 
also preferred to compare EEG parameters with and without visual input, although for this particular recording 
block there were no so-called “resting state” eyes open conditions. Important direction for the future work would 
be longitudinal follow-up of the EEG and behavioral changes in girls with RTT for more direct assessment of 
the link between neurophysiological and clinical symptoms.

Data availability
Anonymized data are available upon request from the corresponding author.
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