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PERCEPTION OF MULTISTABLE IMAGES: EEG STUDIES
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Abstract
In the paper we studied the dynamics of the complex

patterns in human EEG data during a psychophysiolog-
ical experiment by stimulating cognitive activity with
the perception of ambiguous object. A new method
based on the calculation of the maximum energy com-
ponent for the continuous wavelet transform (skele-
tons) was proposed. The paper presented the process-
ing results of experimental data for 20 male volunteers.
Skeleton analysis allowed us to identify specific pat-
terns in the EEG data set, appearing during the percep-
tion of ambiguous objects. Thus, it became possible
to diagnose some associated cognitive processes. We
found complex dynamics in delta, alpha and beta fre-
quency ranges on EEG during the bistable image per-
ception. We believe that this dynamics could be asso-
ciated with processes of concentration of attention and
recognition of complex visual objects.
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1 Introduction
At the present time interdisciplinary tasks are of a

great interest for investigators from different fields
of science. One of the most relevant problem from
prospect of fundamental research and application in
technics is studying of human brain activity. At the
end of XX century studies of human brain were mainly
limited to its physiological and psychological aspects,

while at present time brain investigation moves to the
field of combined neuroscience, physics, mathematics
and nonlinear dynamics.

Brain itself is commonly considered as a complex net-
work structure that consist of huge number of oscilla-
tory elements – neurons [Betzel, Medaglia, Pasqualetti,
and Bassett, 2016; Hermundstad, Bassett, Brown et al.,
2013; Atasoy, Donnelly, and Pearson, 2016]. Main
source of information about brain activity are various
experimental methods including electroencephalogram
(EEG). EEG is a sum of electric currents generated by
a group of neurons near recording electrode. Complex
nature of brain neuronal network results in complex
structure of EEG signal, which commonly has num-
ber of specific rhythms, oscillatory patterns and differ-
ent types of intermittent behavio [Sitnikova, Hramov,
Grubov et al., 2012; Koronovskii, Hramov, Grubov,
Moskalenko, Sitnikova, and Pavlov, 2016]. It is well-
known that time-frequency structure of EEG signal cor-
relates with functional state of body and brain. Thus,
studying of specific features and processes on EEG is
important for understanding fundamental mechanisms
of brain.

Cooperative neuronal dynamics causes different states
of brain, including various types of cognitive ac-
tivity, e.g., formation of memory traces [Buzsaki,
1989; Haenschel, Vernon, Dwivedi, Gruzelier, and
Baldeweg, 2005], information processing [Cichy,
Khosla,Pantazis, Torralba, and Oliva, 2016; Palmeri
and Gauthier, 2004], spatial orientation [Sargolini,
Fyhn, Hafting et al., 2006; Kjelstrup, Solstad, Brun
et al., 2008], intelligence [Colom, Karama, Jung, and
Haier, 2010; Van den Heuvel, Stam, Kahn, and Hul-
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shoff Pol, 2009], etc. The information processing in
the brain includes the following steps: acquisition of
external data (perception), their analysis, and the brain
response (reaction). Therefore, perception plays an im-
portant role in further data analysis and cognitive activ-
ity, especially visual perception and image recognition,
since human brain acquires about 90% of information
through eyes.
Visual perception and corresponding cognitive pro-

cesses were often studied using ambiguous (bistable)
images [Leopold and Logothetis, 1999; Sterzer, Klein-
schmidt, and Rees, 2009; Pisarchik, Jaimes-Reategui,
Magallon-Garcia et al., 2014; Runnova, Hramov,
Grubov et al., 2016]. The perception of bistable im-
ages is one of important tasks allowing to understand
various different aspects of visual perception and ob-
jects recognition. The mechanism of image recogni-
tion is not well understood yet, but it is known that
the perception is the result of processes in distributed
neuronal network of occipital, parietal and frontal cor-
tex areas [Tong, Meng, and Blake, 2006]. This prob-
lem also requires the consideration of the brain activ-
ity simultaneously in different frequency ranges asso-
ciated with different rhythms of brain (delta, alpha,
beta) [Tewarie, 2016; Blanco, 2013]. According to re-
cent papers [Stam, 2000; Elgendi, Vialatte, Cichocki,
Latchoumane, Jeong, and Dauwels, 2011], this ap-
proach would allow simultaneous observation of dif-
ferent states of the neural network, that, in turn, is very
useful for understanding not only perception, but also
other types of cognitive brain activity.
In this paper we studied features of brain cognitive ac-

tivity associated with visual perception of ambiguous
images among groups of participants. Our approach
was based on the analysis of spectral properties of mul-
tichannel EEG signals, the powerful tool for studying
brain activity at the macroscopic level. The features
were associated with different ratio between delta, al-
pha, and betta rhythms before, during and after percep-
tion.

2 Study Methods
2.1 Experiment
The experimental studies were performed accord-

ing to ethical standards of the World Medical Asso-
ciation [World medical association, 2000]. Twenty
healthy subjects from a group of unpaid male volun-
teers in the age of 19-30 with normal visual acuity par-
ticipated in the experiments. The purpose of this exper-
iment was to obtain multichannel EEG data during the
unconscious decision on ambiguous image interpreta-
tion. In our physiological experiment with EEG activ-
ity registration we used a set of images based on a well-
known bistable object, the Necker cube [Necker, 1832],
as a visual stimulus. This is a projection of cube with
transparent faces and visible ribs; an observer without
any perception abnormalities treats the Necker cube as

a 3D-object thanks to the specific position of the ribs.
Bistability in perception consists in the interpretation of
this 3D-object as to be oriented in two different ways,
in particular, if the different ribs of the Necker cube are
drawn with different intensity.
In our experimental work the contrast of the three mid-

dle lines centered in the left middle corner, I ∈ [0, 1],
was used as a control parameter. The values I = 1 and
I = 0 correspond, respectively, to 0 (black) and 255
(white) pixels’ luminance of the middle lines. There-
fore, we can define a contrast parameter as I = y/255,
where y is the brightness level of the middle lines using
the 8-bit grayscale palette.
Figure 1 demonstrates two Necker cubes with differ-

ent values of parameter I: I = 0.15 (A) and I = 0.75
(B) correspondingly. Necker cube with I = 0.15
is more likely to be perceived as a projection of 3D-
cube with its frontal face looking to the left. This
way of cube’s orientation and perception was condi-
tionally called “left-oriented”, while another way of
perception (like cube with I = 0.75) was called “right-
oriented”. Also Figure 1 depicts examples of multi-
channel EEG signals during perception of “left-” and
“right-oriented” cubes. EEG channels for investiga-
tion were chosen from International “10-20” scheme of
EEG electrode placement [Jasper, 1958]. Chosen elec-
trodes (O2, O1, P4, P3, C4, C3, Pz, Cz) are mostly lo-
cated in occipital area since that part of brain is known
to be responsible for visual perception.
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Figure 1. Examples of “left-” and “right-oriented” Necker cube im-
ages with different values of control parameter I : I = 0.15 (A)
and I = 0.75 (B) and fragments of corresponding EEG data from
O2, O1, P4, P3, C4, C3, Pz, Cz channels of “10-20” scheme.

The Necker cube images with different values of I
(I = 0.15, 0.4, 0.5, 0.6, 0.85) were demonstrated for
a short time, each lasting between 1.0 and 1.5 seconds,
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interrupted by a background abstract picture for 5.0 –
5.5 seconds. The subject was instructed to press ei-
ther left or right key on special input device depend-
ing on his interpretation of the Necker cube projec-
tion observed during each demonstration. The back-
ground abstract images were used for neutralization
of possible negative secondary effect of the previous
Necker cube image demonstrations [Leopold, Wilke,
Maier, and Logothetis, 2002]. The whole experiment
lasted for about 45–50 min for each participant, includ-
ing short recording of EEG background activity with-
out cognitive stimuli. During the experimental session
the cubes of different configuration were presented ran-
domly (each configuration for about 100 times) and the
electrical brain activity was recorded as multichannel
EEG.
EEG signals were recorded with electroencephalo-

graphic recorder Encephalan-EEGR-19/26 (Medicom
MTD, Russia) with multiple EEG channels and two-
button input device. Monopolar registration method
and classical “10-20” electrode system were used for
EEG recording.

2.2 Wavelet-Based Method
In our work we used continuous wavelet transform

(CWT) [Hramov, Koronovskii, Makarov et al., 2015;
Koronovskii, Ponomarenko, Prokhorov et al., 2007;
Hramov, Koronovskii, Ponomarenko et al., 2007;
Pavlov, Hramov, Koronovskii et al., 2012] for time-
frequency analysis of oscillatory patterns in EEG.
CWT is a convolution of investigated signal x(t) (EEG
signal in our case) and a set of basic functions φs,τ :

W (x, τ) =

∫ ∞

−∞
x(t)φ∗

s,τ (t)dt (1)

In equation (1) “ ∗ ” marks cojugation of complex
number. Each basic function from this set can be
obtained from one function φ0, the so-called mother
wavelet, by following transform:

φs,τ (t) =
1√
s
φ0

(
t− τ

s

)
(2)

In equation (2) φ0 — mother wavelet, s — time scale,
which determines extension or compression of initial
mother function, τ — time shift of wavelet transform.
There are a lot of different mother wavelets that find

a use according to the problems of the current study.
In present work we used CWT with Morlet mother
wavelet with parameter ω0 = 2π [Ovchinnikov, Lut-
tjohann, Hramov et al., 2010; Ovchinnikov, Hramov,
Luttjohann et al., 2011]:

φ0(η) = π− 1
4 ejω0ηe−

η2

2 (3)

According to papers [Sitnikova, Hramov, Koronovskii
et al., 2009; Luijtelaar, Hramov, Sitnikova et al., 2011;
Sitnikova, Hramov, Grubov et al., 2014] the Morlet
wavelet is one of the most effective in analysis of com-
plex experimental signals of biological nature (includ-
ing EEG data) because of its optimal time-frequency
resolution.
In present work intrinsic frequency dynamics was in-

vestigated using “skeletons” of wavelet surfaces [Sit-
nikova, Grubov, Hramov et al., 2011; Hramov,
Kharchenko, Makarov et al., 2016]. The “skeletons”
of wavelet surfaces are constructed to extract dominant
EEG frequencies and determine the evolution of oscil-
latory patterns in EEG data. In this paper, we focused
on the processing of EEG data recorded in the occipital
region (see Fig. 1). First, the momentary wavelet en-
ergy distribution Ei(fs, t0) was constructed for some
time moment t0.

Ei(fs, t0) = |W (fs, t0)|2 (4)

Then the function Ei(fs, t0) was examined for the
presence of local maximum Emax. If several local
maxima Emax,k were detected in Ei(fs, t0), then the
highest maximum was selected and its frequency was
considered as dominant frequency of oscillatory pat-
tern at given time moment t0. In order to construct full
“skeleton” of wavelet surface the procedure described
above was repeated consequently for all points in time
series of given EEG signal.

3 Results
In present paper we directly focused on the processes

that take place during perception of Necker cube. We
proposed a method for estimation of level and na-
ture of beta–activity in occipital region of the human
brain since this type of activity is commonly associ-
ated with visual perception. For this we consider the
main characteristic of the frequency range of 2030 Hz,
well traced through the processes associated with the
recognition of ambiguous images for the majority of
volunteers.
We introduced a numerical criterion for the presence

of beta-rhythm in every time moment of EEG signal:
the values of first two “skeletons” lie in range of 20–30
Hz in this time moment. In other words, if the condition
is satisfied for a particular channel of the occipital re-
gion, the beta-criterion β is equivalent to the constant,
“1”, and otherwise β is “0”, then β – criterion:

βi =

{
1 if 20 < f i

1,230
0 in other cases (5)

Figure 2A demonstrates the example of calculation of
the proposed beta-criterion β for the channel Pz. This
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Figure 2. Dependence of the betacriterionβi over time for Pz chan-
nel (A) and betacriterion β8i for brain occipital region (B).

EEG-signal is related to the electrical activity of the in-
terhemispheric slot in human brain. The distribution
of beta-criterion β is shown in black, green marks on
Figure 2 correspond to the moments of each Necker
cube demonstration while red marks show the moments
of humans response (pressing the button). Figure 2A
shows that in all presented cases the beta-criterion β
is “0” before bistable stimulus, then it changes to “1”
after stimulus demonstration and keeps “1” during re-
sponse, few moments later it lowers to “0” again till the
next stimulus demonstration.
However, consideration of the signal for each EEG

channel is not convenient and leads to the accumula-
tion of errors. Thus we decided to average character-
istics of excitable beta–activity for the whole occipital
region. Note that in this case we consider the spatial
and temporal dynamics of occurring beta–pattern cor-
related with the cognitive process of recognition of a
complex ambiguous object. In this case the presence
of the beta–rhythm criterion β8 for each channel, it can
simple sum the “0” and “1” for eight channels occipital
EEG channels.

β8i =
∑

1 if 20 < fO2
1,2 < 30 else 0

1 if 20 < fO1
1,2 < 30 else 0

. . .
1 if 20 < fCz

1,2 < 30 else 0

(6)

Figure 2B demonstrates the results of calculation of
beta–criterion β8. The results are similar to the ones
shown on Figure 2A, but with more accurate demon-
stration of gradual increase and decrease of beta–
criterion β8.
The results obtained with beta–criteria β and β8 were

promising so we decided perform additional analysis
for another two significant frequency ranges on EEG
signal: delta (1-4 Hz) and alpha (8-12 Hz). We intro-
duced delta-criterion δ8 and alpha-criterion α8 similar
to beta–criterion β8:

δ8i =
∑

1 if 1 < fO2
1,2 < 4 else 0

1 if 1 < fO1
1,2 < 4 else 0

. . .
1 if 1 < fCz

1,2 < 4 else 0

(7)

α8i =
∑

1 if 8 < fO2
1,2 < 12 else 0

1 if 8 < fO1
1,2 < 12 else 0

. . .
1 if 8 < fCz

1,2 < 12 else 0

(8)

Also we divided the process of perception of bistable
image into three phases: before perception, during per-
ception, after perception. We calculated criteria δ8,
α8, β8 for each phase separately and averaged them
through multiple cases of bistable stimulus demonstra-
tion to obtain averaged criteria ⟨δ8⟩, ⟨α8⟩, ⟨β8⟩.

A B C

‹α8›

‹β8›

‹δ8›

‹α8›

‹β8›

‹δ8›

‹α8›

‹β8›

‹δ8›

Figure 3. Averaged criteria ⟨δ8⟩, ⟨α8⟩, ⟨β8⟩ during different
phases of bistable stimulus perception: before perception (A), dur-
ing perception (B), after perception (C).

Figure 3 shows the results of analysis of averaged cri-
teria ⟨δ8⟩, ⟨α8⟩, ⟨β8⟩, where green bar corresponds to
averaged delta-criterion ⟨δ8⟩, red – to alpha-criterion
⟨α8⟩, blue – to beta-criterion ⟨β8⟩, different stages of
perception are marked as following: before perception
(A), during perception (B), after perception (C). Fig-
ure 3 demonstrates that frequency EEG dynamics dur-
ing bistable image perception is more complex, than
was shown on Figure 2. There is a significant decrease
in delta and alpha activity during the phase of percep-
tion (Fig. 2B) along with comparable increase in beta
range.

4 Conclusion
In this paper we considered the technique for studying

evolution of the complex patterns in human EEG data
during a psychophysiological experiment by stimula-
tion of cognitive activity with the perception of bistable
object. The new method based on continuous wavelet
transform allows to estimate the energy contribution of
various components in the general and partial dynamics
of the electrical activity for the projections of various
areas of the brain.
The results of these studies appear promising for fur-

ther research of dynamics and activity of the cerebral
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cortex in various cognitive processes. The technique is
based on the calculation of the wavelet “skeleton”, it is
universal for studying of processes of different nature.
Furthermore, this approach is highly customizable to
individual features of volunteers which promises its ap-
plication in biofeedback systems.
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