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Abstract—We develop a mathematical model of a “network
of networks” consisting of a small input network and four
large subnetworks interacting with each other through inhibitory
couplings. We show that synchronization indexes of subnetworks
periodically change in time. Depending on the strength of the
connection, the synchronization indexes of neurons in different
subnetworks can change both in phase and in antiphase.

Index Terms—Synchronization, Hodgkin-Huxley neuron, com-
plex network

I. INTRODUCTION

Nowadays, the use of methods of radiophysics, nonlinear

dynamics and network analysis in problems of neurophysiol-

ogy is an actual trend in modern science [1]–[3].

Various methods of network theory are used in the analysis

of interactions between parts of the brain during cognitive

activity, based both on the analysis of experimental data (for

example, multichannel records of electrical [4]–[13], mag-

netic [14]–[17] and oxygenation [15], [18], [19] activity),

and on numerical modeling of the interaction of individual

neurons and their groups by constructing mathematical models

of networks of nonlinear elements [20]–[23].

Currently, the application of the theory of complex net-

works to neuroscience is very promising for the analysis of

the structural and functional connections of neurons in the

brain [24]–[26]. Collective neural activity plays an important

role in the functioning of the brain. According to studies

of functional magnetic resonance imaging (fMRI), network

activity of the whole brain is generated through the interaction

of several functional subnets during a resting state or per-

forming a task. Collective processes resulting from functional

interactions between distant populations of cortical neurons

support cognitive abilities when performing complex tasks.

Modern understanding of neural communication emphasizes

the vital role of phase coherence in functional interactions

between distant neural ensembles.

In this work we develop a mathematical model of a “net-

work of networks” consisting of a small input network and

four large subnetworks interacting with each other through

inhibitory couplings. We show that synchronization indexes

of subnetworks periodically change in time. Depending on
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the strength of the connection, the synchronization indexes

of neurons in different subnetworks can change both in phase

and in antiphase.

II. METHODS

We use the Hodgkin-Huxley (HH) model to describe the

time evolution of the transmembrane potential of each neuron

[27]. In this work, we consider the coupling via chemical

synapses only.

Synchronization inside each network is quantified with the

synchronization index defined as [29], [30]:

Ξ =

√
1

T − t0

∫ T

t0

η(t)dt, (1)

where t0 and T are durations of transients and total time series,

and η(t) is the standard deviation given as

η(t) =
1

N

N∑
i=1

(
x(i)(t)

)2
−
(

1

N

N∑
i=1

x(i)(t)

)2

. (2)

The lower the synchronization index Ξ, the better the synchro-

nization, so that Ξ = 0 means complete synchronization.

The correlation between interacted N1 and N2 sub-networks

can be found on the base of their synchronization indices

Ξ1 and Ξ2. The Pearson’s linear correlation coefficient is

calculated as follows [31]

r =

∫ T

t0
(Ξ1(t)− Ξ1)(Ξ2(t)− Ξ2)dt√∫ T

t0
(Ξ1(t)− Ξ1)2(Ξ2(t)− Ξ2)2dt

. (3)

Here, r = 1 and r = −1 mean perfect positive and perfect

negataive correlation, respectively.

III. RESULTS

We develop the “network of networks”. The external stim-

ulus of constant current with amplitude A is applied to the

input network of Nex = 5 neurons. All of them are connected

to each other with the coupling strength chosen randomly

from the range [0,0.15]. This network is connected to the

four other subnetworks of N1 = N2 = N3 = N4 = 50
neurons by one-directional excitatory couplings with coupling

strength gc = 0.05 and probability p = 30%. The subnetworks
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Fig. 1. Spatio-temporal diagram of the membrane potential V of neurons in
the first N1 (i = 1, ..., 50), the second N2 (i = 51, ..., 100), the third N3

(i = 101, ..., 150) and the fourth N4 (i = 151, ..., 200) subnetwork.

are connected to each other by two-directional inhibitory

couplings with coupling strength gexc and probability p = 30%.

Inside them neurons are connected to each other according to

“small-world” (SW) topology with coupling strength ginc .

We analyze the dynamics of the developed “network of

networks”. An example of a typical temporal implementation

of the entire neural ensemble is shown in Fig. 1. Within each

subnetwork, all neurons generate spikes at almost the same

time due to the excitatory connection between them. Thus,

the signals averaged over all neurons of each subnetwork

will contain sequences of separate concentrated spikes.It can

be seen that 4 subnets are divided into 2 clusters under the

influence of the inhibitory connection between them: the first

network is synchronized with the fourth, and the second with

the third. Networks synchronized with each other generate

spikes synchronously at the same time intervals, while the

activity of networks from different clusters demonstrates an-

tiphase dynamics. Thus, the two subnet groups are in constant

out-of-phase with each other. Considering that these subnets

are engaged in processing the signal received from a small

input network, we can conclude that in order to achieve an

optimal operation process, 2 groups of networks share the

input information among themselves equally, in each group,

the networks must be synchronous for efficient processing of

the input signal.

It was found that the first subnet for the entire range of the

considered values of the communication forces demonstrates

almost zero correlation with all other subnets at low values

of the inter-network communication strength, which decreases

to r = −0.2 with an increase in inhibiting bonds.In this

case, the other three subnets behave completely differently:

with weak interconnection links, the correlation between their

synchronization indices is close to 0, but with an increase in

this connection, the correlation increases up to 1.0. It should

also be noted that an increase in the strength of intra-network

connections leads to an increase in the correlation between

all networks. It has been shown that increasing couplings

strength between neurons in a small input network affects syn-

chronization in large networks. Given that the input network

plays the role of processing low-level signals, communication

between neurons in this network is necessary for efficient

signal processing.

IV. CONCLUSIONS

A mathematical model of a “network of networks” was

developed, consisting of a small input network and four large

subnets. The external signal received by the input network

was converted by it into a spike sequence, which was then

transmitted to 4 subnets with a “small world” topology,

interacting with each other through inhibitory communication,

which interacted with each other to process the signal.

The dynamics of the developed network model was ana-

lyzed and it was shown that synchronization indices in subnets

periodically fluctuate in time. They were found to exhibit

either in-phase or anti-phase synchronization depending on

the strength of the inhibitory coupling between the subnets.

It is assumed that the mechanism underlying the antiphase

dynamics is the redistribution of cognitive resources between

neural ensembles in the brain.
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