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ABSTRACT

Speech signal processing is widely used to reduce noise impact in acquired data. During the last decades, wavelet-
based filtering techniques are often applied in communication systems due to their advantages in signal denoising
as compared with the Fourier-based methods. In this study we consider applications of a 1-D double density
complex wavelet transform (1D-DDCWT) and compare the results with the standard 1-D discrete wavelet-
transform (1D-DWT). The performances of the considered techniques are compared using the mean opinion
score (MOS) being the primary metric for the quality of the processed signals. A two-dimensional extension of
this approach can be used for effective image denoising.

Keywords: wavelet-transform, denoising, thresholding, speech signal

1. INTRODUCTION

Wavelet theory has numerous applications for denoising of signals and images allowing to improve the quality of
information received in communication systems. An important applied problem is, e.g., speech enhancement for
the needs of small portable devices such as the hearing-aid devices.1 Effective noise filtering can be provided by
different ways, and elaboration of appropriate methods of data processing remains an actual technical problem.
There are various sources of noise presented in the environment, and the corresponding fluctuations may occupy
either some specific frequency band or the entire frequency band. When frequency bands of noise and information
signal are coincide (at least, partly), it becomes very difficult to remove noise without losing information about
the signal. Therefore, noise filtering with keeping original features of the processed signal is a challenging task.2

Wavelet-based denoising techniques have advantages in solving this problem due to their good time-frequency
localization and the possibility of performing the multiresolution analysis.

Denoising can be provided by the correction of the wavelet-coefficients with soft or hard thresholding ap-
proaches. The standard filtering technique is the 1D-DWT. Within this approach, large decomposition coefficients
are mainly associated with the signal, while small wavelet coefficients are caused by fluctuations. Denoising is
achieved by selecting an appropriate threshold to remove noise-related coefficients. An effective denoising method
is based on the 1D-DWT with the soft thresholding.3

However, 1D-DWT has essential disadvantages that are discussed in many review papers and monographs. In
order to improve the quality of data processing, various modifications and extensions of the standard denoising
methods were proposed. Among these new tools, a 1D-DDCWT should be mentioned.4 It uses frames or
overcomplete expansions that provide a possibility of better data compression and noise reduction due to applying
smoother basic functions. Another tool is the dual-tree complex wavelet transform (1D-DTCWT) that also
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improves some shortcomings of the 1D-DWT. Both, the 1D-DDCWT and the 1D-DTCWT have their own
distinct characteristics and advantages. Due to this, they are sometimes used within combined tools for signal
denoising.4

In order to provide a characterization of speech signal denoising, the MOS test is often applied that gives an
index for speech quality rating. Recently, several objective MOS assessment methods were proposed, such as the
perceptual evaluation of the speech quality (PESQ). It evaluates the audible distortions based on the perceptual
domain representation of two signals, namely, the original signal and the filtered signal.

In this study we compare abilities of 1D-DDCWT and the standard 1D-DWT. Our analysis is based on
numerical measures of the denoising quality such as the root mean square (RMS) error and the MOS. All
estimations are performed using MATLAB softwares.

2. METHODS

2.1 1-D Discrete Wavelet Transform

The simplest wavelet-based approach to signal denoising uses the critically sampled DWT and the pyramidal
decomposition scheme. Wavelet-coefficients reflecting features of the signal’s structure are corrected before
performing the inverse DWT. The 1D-DWT approach assumes the perfect reconstruction with two filter banks.

An analyzed function f(t) ∈ L2(R) can be decomposed using the wavelet ψ(t) and the scaling function φ(t)
as follows

f(t) =
∑

k

cj0(k)φj0,k(t) +
∑

j≥j0

∑

k

dj(k)ψj,k(t), (1)

where j0 is an arbitrary starting scale, cj0(k) are the approximation or the scaling coefficients, and dj(k) are the
detail or the wavelet coefficients. The expansion coefficients are calculated using a pyramidal algorithm.5–8

The result of 1D-DWT is a multilevel decomposition, in which the signal is decomposed into approximation
and detail coefficients at each level of resolution. Within this decomposition, the application of scaling function
and wavelets can be treated as the low-pass and the high-pass filtering of data series.9

An important part of signal denoising is the thresholding of wavelet-coefficients dj(k). It is typically assumed
that small coefficients are mainly related to noise while large coefficients are associated with important signal’s
features. Two main thresholding techniques are typically applied, namely, the hard and the soft thresholding.10

Hard thresholding is a “keep or kill” procedure; it removes noise-related coefficients leaving unchanged coefficients
associated with the information signal

p(x) =

{

x, | x |≥ C,

0, | x |< C.
(2)

Since it is quite difficult to select an appropriate threshold C, distortions of the filtered signal occur. Soft
thresholding corrects all coefficients

p(x) =







x − C, x ≥ C,

x + C, x ≤ −C,

0, | x |< C,

(3)

however, the continuity of the function (3) has some advantages. It makes algorithms mathematically more
tractable. Sometimes, pure noise coefficients may pass the hard threshold and appear as annoying “blips” in the
processed signal. Soft thresholding shrinks these false structures.

2.2 1-D Double Density Complex Wavelet Transform

An extension of 1D-DWT, namely, the 1-D double density DWT (1D-DDDWT) was recently proposed. It is
based on a single scaling function and two distinct wavelets where the two wavelets are designed to be offset
from one another by one half, the integer translations of one wavelet fall midway between the integer translations
of the other wavelet. In this way, 1D-DDDWT approximates the continuous wavelet transform (having more
wavelets than necessary thus providing a closer spacing between adjacent wavelets within the same scale). 1D-
DDDWT is two-times expansive regardless of the number of scales implemented potentially much less than
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for the standard 1D-DWT. 1D-DDDWT has twice as many coefficients as the critically sampled 1D-DWT. To
construct 1D-DDDWT, the oversampled filter banks are used. Let the filter h0(n) is the low-pass (scaling) filter,
while h1(n) and h2(n) are the high-pass (wavelet) filters.

A three-channel filter bank is used to develop 1D-DDCWT corresponding to a wavelet frame based on the
scaling function Φ(t) and wavelets Ψ1(t) and Ψ2(t)

Φ(t) =
√

2
∑

n

h0(n)Φ(2t − n),

Ψi(t) =
√

2
∑

n

hi(n)Φ(2t − n), i = 1, 2. (4)

1D-DDDWT has the following important properties: 1) it employs one scaling function and two distinct wavelets
which are designed to be offset from one another by one half; 2) 1D-DDDWT is overcomplete by a factor of two;
3) it is nearly shift-invariant if complex wavelets (with real and imaginary parts related via the Hilbert transform)
are considered for signal denoising.11 In the latter case the approach known as the 1D-DDCWT is considered.
Within the 1D-DDCWT the input signal is processed by parallel iterated filter banks for real parts hi(n) and
imaginary parts gi(n), where i = 0, 1, 2. A general structure of such decomposition is shown in Figure 1 for the
analysis stage (and similar diagram can be used for the synthesis stage).

Figure 1. Filter banks diagram of 1-D DDCWT

2.3 Mean Opinion Score

Mean Opinion Score (MOS) – ITU-T P.800 was used as a primary metric for the quality of the signal after its
processing. This is a dimensionless quantity with values ranging from 1 to 5. It gives an estimate of human
perception of sound quality. Estimating MOS with humans is a long and expensive procedure, involving many
humans listening to the records and giving their subjective opinions. For this reason, MOS is not suitable during
the stage of the algorithm development. Here, we used an objective perceptual evaluation of the sound quality
(PESQ) – ITU-T P.862. It produces similar results to MOS in the same scale (1 to 5) to give an estimate of
human perception of sound quality. Our analysis was based on the Matlab implementation of PESQ algorithm.12
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3. RESULTS

A wavelet transform must be specified by its analysis and synthesis filter banks, single-level convolutions and
boundary treatment, and the total number L of iterated multiresolution levels. For the purpose of this research
of the potentials of wavelet transforms in denoising speech signals, several experiments were performed. Within
the 1D-DWT approach we used a 3-level decomposition with the Daubechies wavelet D8 (Figure 2). Thus the
decomposed signal is characterized by approximation coefficients (at level 3) and detail coefficients at levels 1,
2, 3.

Figure 2. Decomposition of a speech signal using 1D-DWT and 3 levels of resolution.

(a) (b)

Figure 3. RMS error (a) and MOS (b) for 1D-DWT approach versus SNR, dB.

The considered test speech signal was the phrase “Hi, how are you?” (in Russian). It was saved as *.wav-file
and sampled at 44100 kHz. Aiming to compare the quality of filtering provided by different methods for noise
reduction, this signal was corrupted by Gaussian noise with SNR changed from 0 dB till 25 dB. RMS error
between the original (noise-free) and the filtered signal was used to quantify the filtering performance. Best
noise reduction was associated with the minimal RMS error.

At the first stage, we compared the results of the 1-D DWT with Daubechies wavelet D8 for two types of
thresholding (hard and soft thresholding – Figure 3). According to the obtained results, the soft thresholding is
more efficient than the hard thresholding for all noise levels. At the second stage, we applied the 1D-DDCWT
approach. Figure 4 illustrates advantages of this tool. Here, we show results for high noise levels (SNR=0, 1,
2 dB).
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Figure 4. RMS error (a) and MOS (b) versus SNR, dB, for different filtering techniques.

Further we compared the results of noise reduction depending on the decomposition level L. Figure 5 shows
the values of RMS error and MOS for the 1D-DWT with high and soft thresholding. According to Figure 5a, RMS
error slightly decreases with L, and the reduction of this quantity is small for L > 3. Increased decomposition
level increases the computational complexity of the denoising algorithm. However, higher decomposition levels
are not significantly improve the method’s quality. In practice, the decomposition level should be limited to
increase the speed of data processing (e.g., L ≤ 6). The value L = 3 represents a good compromise between
increased computational complexity and reduced filtering errors. Figure 5b also confirms advantages of the soft
thresholding strategy.

(a) (b)

Figure 5. RMS error (a) and MOS (b) depending on the decomposition level for 1D-DWT approach.

(a) (b)

Figure 6. RMS error (a) and MOS (b) depending on the decomposition level for 1D-DDCWT approach.
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Analogous results are obtained for 1D-DDCWT approach (Figure 6). Again, the RMS error decreases with
the resolution level. Unlike Figure 5b, MOS is significantly higher for the 1D-DDCWT technique confirming
advantages of this tool. A good reconstruction is obtained at the first decomposition level with MOS=3.06 for
1D-DDCWT (SNR=0 dB) compared with the best MOS=1.89 for 1D-DWT approach (at level 2 – Figure 5b).

4. CONCLUSIONS

In this study we considered abilities of the 1D-DWT and the 1-D DDCWT for denoising of speech signals
corrupted by noise. Signal denoising was performed in the wavelet domain by thresholding of the wavelet
coefficients. We showed that the soft thresholding is preferable than the hard thresholding because the soft
thresholding provides a reduced error of signal restoration. An important measure of quality of signal denoising
is MOS that is estimated based on the perceptual evaluation of speech quality. We demonstrated that the 1-D
DDCWT method is more effective even for highly corrupted signals, and this approach can significantly improve
the quality of noise reduction. Increased decomposition level does not always provide remarkable improvement
of the signal quality. For practical reasons, it is preferable to be limited by 6-th level for the 1D-DWT, while
smaller levels typically provide better results in the case of the 1-D DDCWT.
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