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ABSTRACT

We have analyzed the neuronal interactions in the children’s brain cortex associated with the cognitive activity
during simple cognitive task (Schulte table) evaluation in two distinct frequency bands – alpha (8–13 Hz) and
beta (15–30 Hz) ranges using linear Pearsons correlation-based connectivity analysis. We observed the task-
related suppression of the alpha-band connectivity in the frontal, temporal and central brain areas, while in the
parietal and occipital brain regions connectivity exhibits increase. We also demonstrated significant task-related
increase of functional connectivity in the beta frequency band all over the distributed cortical network.
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1. INTRODUCTION

The problem of the development and implementation of high technologies in the educational process, allowing
to optimize educational activities and increase the efficiency of perception of new information, is an important
modern task requiring interdisciplinary approaches.1 In this context, the most intriguing problems are devoted to
the analysis of the psychophysiological state of a person during educational activities and solving cognitive tasks.
For example, special attention is paid to studying the brain’s structure and its cognitive functions to improve
the quality of learning.2 At the moment, the symbiosis of these scientific fields presents great opportunities for
optimizing the educational process based on the achievements of cognitive neuroscience.3,4 Notable success has
been achieved in the preschool education.5 In Ref.6 the authors showed that, based on the knowledge of the
physiological mechanisms of the development of dyslexia and the syndrome of distracted attention in children,
it became possible to correct educational activities to suppress these pathologies. There is also possibility to
implement the robotics systems controlling by neuronal activity in educational process.7 In our recent work8 we
have shown that a number of cognitive and psychological characteristics of a person can be evaluated using EEG
data during simple tests for the development of attention and memory (Schulte table). Thus, we can conclude
that, understanding the features of cognitive activity of students during the educational process, it is possible
to significantly increase the effectiveness of training and the quality of assimilation of new information. The key
to understanding students’ cognitive activity is registering brain activity during the assimilation of new material
and developing advanced mathematical methods for analyzing the recorded data obtained during training and/or
passing tests.

In the course of the mentioned problem the most suitable neuroimaging technique is electroencephalogra-
phy (EEG), primarily due to good frequency resolution, ease of signal acquisition and low cost compared to
methods such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET) or mag-
netoencephalography (MEG). Usually, correlations between neuronal activity and psychophysiological state are
considered in terms of segregation of brain regions and quantifying their behavior using standard methods of
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time-frequency analysis,8–10 event-related potentials analysis11–13 as well as artificial intelligence and machine
learning.14,15

However, in accordance with modern concepts, the normal functioning of the brain, especially various aspects
of its cognitive activity, are associated with complex neural interactions that occur in the spatially distributed
cortical network of the brain.16–19 The integration process seeks to use the cerebral cortex areas that are func-
tionally distant and distant from each other in space in order to solve a complex task that requires concentration
of visual attention, involvement of short-term memory, and spatial thinking. Such tasks include the assimilation
of new information, the implementation of logical, arithmetic and lexical operations. At the same time, the effi-
ciency of the brain during the long-term solution of such cognitive tasks, as we have shown, cannot be maintained
at the same level.20,21 The weakening of neural interactions and the reconfiguration of the network of functional
connections between brain regions are objective factors that can reflect cognitive fatigue and a decrease in the
perception of new information.22

This paper aims at the revealing features of functional connectivity in children’s brain network while perform-
ing Schulte table test. Particularly, we consider workload network patterns in alpha (8-13 Hz) and beta (15-30
Hz) frequency bands and analyze inter-areal brain communication under the mental task accomplishment.

2. METHODS

2.1 Participants

Participants were recruited among the children of the Innopolis University employees (5 healthy subjects, aged
7–10, right-handed, never participated in this or similar experiments before and having no history of medical
brain conditions). All the participants as well as their parents were pre-informed about the goals and design
of the experiment. Experimental studies were performed in accordance with the Declaration of Helsinki and
approved by the local research Ethics Committee of Innopolis University.

2.2 Data acquisition

EEG signals were recorded using non-invasive EEG system actiCHamp (Brain Products GmbH, Germany)
presented in Fig. 1a. Electrocardiogram (ECG) and electro-oculogram (EOG) were also recorded for further
removal of cardiac and eye-movement artifacts. All recorded signals were amplified and digitized at the sampling
rate of 1000 Hz. To capture neuronal processes in spatially extended brain network we used 31 EEG Ag/AgCl
electrodes according to the international ”10-10” system proposed by the American Electroencephalographic
Society (Fig. 1b).

2.3 Experimental procedure

The experimental session started with a 5-min recording of the background brain activity, during which the
participating children were instructed to relax and listen to classical music. Then, during the active phase of
the experiment each participant was instructed to evaluate mental tasks (Schulte table test). Schulte table,
representing in a classical form a 5x5 grid with random distribution of numbers over the cells, is used to measure
cognitive performance indexes based on the efficiency of its evaluation (Fig. 1c).8 First, participant solved Schulte
table adapted for children in a playful form. After understanding the paradigm of the task, they were asked to
solve two classical Schulte tables with a short resting period of about 15–20 seconds. Each table performance
took at least 42 seconds and 51 seconds on average.

2.4 Data preprocessing

The following preprocessing steps were carried out to prepare raw EEG recordings for further analysis.

First, raw EEG recordings were down-sampled to 250 Hz.

Second, cardiac and eye-movement artifacts were removed using recorded ECG and EOG signals via artifact
removal method based on the independent component analysis (ICA).23 A Notch filter around 50 Hz was applied
to EEG and EMG data to exclude power line effects.
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Figure 1. (a) Electroencephalograph actiCHamp (Brain products GmbH, Germany) used for high-resolution children’s
brain electrical activity recording. (b) International 10-10 EEG system. Highlighted sensors were used in the study and
colored in accordance with clustering. (c) Typical example of Schulte table.

Finally, we applied a 5th-order Butterworth band-pass filter in the 8–13Hz and 15–30Hz frequency ranges to
the entire multichannel EEG signals in order to extract α- and β-band neuronal oscillations. Finally, the bandpass
filtered time series were split into 3 segments, each lasting 40 seconds – one segment baseline activity preceding
mental tasks accomplishment and two segments of brain activity corresponding to Schulte table evaluation.

2.5 Functional connectivity analysis

First, we composed 31 EEG signals into 6 clusters in accordance with their location: frontal F (Fp1, Fp2, F3,
Fz, F4, Fc1, Fc2), left temporal LT (F7, Ft9, Fc5, T7), right temporal RT (F8, Fc10, Fc6, T8), central C (C1,
Cz, C2, Cp1, Cpz, Cp2), parietal P (P1, Pz, P2), occipital O (O1, Oz, O2) (see Fig. 1b).

Pairwise linear connectivity analysis was performed using calculation of Pearson’s correlation coefficient ρ.
Consider a pair of signals Xb,t(t) and Y b,t(t) in background (superscript b) and task-related (superscript t)
activity. We provided windowed connectivity analysis with window width w = 2 s (500 data points) and
overlapping δw = 1 s (250 data points) following the equation:

ρb,tXY (ti) =
Cov(Xb,t′

i , Y b,t′

i )

σXb,t′

i σY b,t′

i

, (1)

where Xb,t′

i and Y b,t′

i are mean-averaged samples of Xb,t(t) and Y b,t(t) within i-th window with standard devia-

tion σXb,t′

i and σY b,t′

i normalized to 1. To reveal significant between-subject changes of functional connectivity
associated with mental task evaluation we applied pairwise t-test for related samples to ρtXY and ρbXY . Mul-
tiple comparison problem (MCP) due to the simultaneous pairwise comparison of 930 links was corrected via
permutation test following Ref.24

3. RESULTS

Fig. 2 illustrates the coupling matrices of brain functional connectivity in the alpha band obtained during
windowed linear correlation analysis. Here, each cell contains weight of the link between corresponding EEG
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Figure 2. Coupling matrices of brain functional connectivity in the alpha band containing mean values ρbtXY for background
activity (a) and brain activity associated with Shulte tables evaluation (b,c). Significant task-related changes of functional
connectivity matrices (d,e) and differences between the tasks (f).

sensors introduced as a mean value of Pearson’s correlation coefficient ρbtXY . First of all, one can clearly see
that coupling matrices in background (a) and task-related activity (b,c) are completely different, while task-
related matrices share the same pattern. Statistical t-test for independent samples with cluster-based MCP
correction based on random partitions reveals task-related changes of the brain functional connectivity consist
in reduction of correlation between the sensors of frontal, temporal and central regions, whereas the correlation
between the occipito-parietal area with the other regions increases (d,e). At the same time, brain functional
connectivity matrices obtained during two consequent evaluations of the Schulte tables are almost identical with
rare significant differences (f).

Fig. 3 demonstrates the similar effects of task-related changes in brain functional connectivity structure,
but in the beta range. It is also seen, that neuronal interactions in the beta band happen in the same way
during task-related activity (b,c), which is different from the resting state (a). Having analyzed the statistical
differences, we observed that neuronal interactions between EEG sensors exhibit increase of the linear correlation
coefficient in almost every pair of sensors. One can see, from (d,e) that interaction between the right temporal
(RT) area and the other brain regions demonstrates the most pronounced increase of correlation.

Taken together, the results of the functional connectivity of children’s brain during mental task accomplish-
ment show the suppression of the interaction in the alpha band, except for the link between occipito-parietal
region and frontal and central regions. On the contrary, beta-band connectivity increases with dominating role
of right temporal zone. These results are in line with the knowledge about the pathways of the visual sensory
information within the cortical brain network through the synchrony of alpha-oscillations in the occipito-parietal
zone and frontal area. At the same time, activation of the beta-band neuronal interactions in the right temporal
area indicates the brain region involved in visual sensory information processing.
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Figure 3. Coupling matrices of brain functional connectivity in the beta band containing mean values ρbtXY for background
activity (a) and brain activity associated with Shulte tables evaluation (b,c). Significant task-related changes of functional
connectivity matrices (d,e) and differences between the tasks (f).

4. CONCLUSION

We have analyzed the neuronal interactions in the children’s brain cortex associated with the cognitive activity
during Schulte table evaluation in two distinct frequency bands – alpha (8-13 Hz) and beta (15-30 Hz) – using
linear Pearsons correlation-based connectivity analysis. We observed the task-related suppression of the alpha-
band connectivity in the frontal (F), temporal (LT and RT) and central (C) areas, while in the parietal (P) and
occipital (O) regions connectivity exhibits increase. We also demonstrated significant task-related increase of
functional connectivity in the beta band all over the distributed cortical network.
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